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Abstract

This article presents the “DSPuva16” processor,
specifically developed for Power Electronics
applications. As its name indicates, this is a Digital
Signal Processor oriented to calculation: it operates
using fixed-point 16-bit numbers extending its precision
up to 24 bits. The MAC operations (rD = rD ± rS * rT)
are made regularly using only one instruction cycle, that
requires four clock cycles. The processor has been
physically tested on FPGA working at 40 MHz.

The application of this processor in Power
Electronics (distributed generation systems, AC motor
control, active filters) is quite natural, because all
working magnitudes are limited in range. The use of
several processors is also possible: each one would
execute a different regulation loop, with working cycles
between 5 and 100 microseconds.

1. Introduction

The first devices used to control electronic power
converters (rectifiers, inverters) were analog circuits
based on op-amps [7]. When first microprocessors
appeared, they were immediately implemented in the
control circuits [5] replacing their equivalent analog ones
because of their inherent advantages of stability, noise
immunity and facility of adjustment. Later we saw the
rise of digital signal processors, with greater calculation
capacity, which allowed a more precise control and to
reach remarkably superior performances [2].

At the moment we are in a point in which, clearly, a
processor alone does not suffices for controlling all the
system: lots of regulation loops must be controlled, some
of them working at high frequency (near the
microsecond) [6]. In addition, other tasks such as remote
communication or user interface must be attended with
increasing behavior demands.

The obvious solution is to use several processors to
take care of these diverse tasks. It is not only cheaper
and easier to control them that way instead of using only

one high performance processor, but also that is the only
way to guarantee control in real time.

What happens if the possibility of connecting several
processors in a printed circuit board is evaluated?
Immediately we get involved in new problems: a high
number of nets are required for the high data flow
between processors, because the standard serial channels
are not usually enough. So additional intermediate
elements must be added to accommodate the different
data flows. Besides, in general, all used components
quickly become obsolete, which forces to redesign all
systems once and again. All of these topics lead
inevitably to elevated NRE costs.

The panorama is completely different if soft
processors are used. Possibly their performance is not as
good as their counterpart hard ones, but when they
become all integrated in a chip (FPGA or ASIC) all the
previous problems disappear immediately.
Communication between processors is flexible and
immediate using dual-port synchronous memories [4],
whose use absolutely does not affect the cost of the
equipment [1]. Obsolescence is null since previous
designs can be synthesized again, targeting new devices,
which will be able to work at higher frequencies.

The main limitation we have, specially in the FPGA
domain, is the impossibility of using floating-point units,
because their use is absolutely prohibitive if they are not
hard-wired on the chip. Nevertheless, it is also possible
and it is not excessively complex the use of fixed-point
arithmetic. All magnitudes (voltages, currents, gains of
regulators, etc.) are naturally or artificially limited by
working restrictions [6].

Therefore, in this applications field it would be
normal the use of several fixed-point digital signal
processors and one or two general purpose processors to
take care of communications and user attention. Their
communication inside FPGA or ASIC devices is not
expensive: there are no restrictions in the amount of
communication lines, because they are all internal. The
bandwidth  is not a problem either, because dual-port
memories may work at system frequency and use very
low space.



This article presents a fixed-point DSP with enough
performance and small size, prepared to handle a
reduced set of variables. It has been designed thinking
that it could be better to use several small and connected
processors solving different loosely coupled tasks, than a
huge processor doing all the work. The latter would
force designers to use a considerably greater clock
frequency and a complicated interruption scheme to
attend all the real time demands. On the other hand,
several processors may execute different regulation
loops employing different working periods, but they are
easily coupled as seen on section 7 and demonstrated in
[1].

2. Main features of the DSPuva16

The DSPuva16 is a 16-bit fixed-point digital signal
processor that extends its precision up to 24 bits. It uses
what is called Harvard architecture, because it gets
instructions using dedicated buses to its program
memory (whose size varies between 256x16 and 4Kx16,
according to the processor model) and exchanges data
(up to 256 synchronous 16-bits ports) using other buses.

Figure 1. External connections of the DSP.

Its basic operation is the multiplication with
accumulation, either positive or negative (rD = rD ± rS *
rT), that it regularly executes in an instruction cycle.
This one is always made using four clock cycles, as it
corresponds to its RISC architecture.

It has 16 registers of 24 bits, denominated from ‘r0’ to
‘r15’, that can be used in any operation except for ‘r0’,
which cannot be used as operand. Indeed this
characteristic allows us to considerably extend the
possibilities of the processor without adding excessive
complexity to the internal design. When the ‘r0’
codification is found in the location of ‘rS’, its value is
immediately annulled, and when it is found in the
position of ‘rT’, its value is replaced by a 16-bit constant
that is taken from the program memory. No additional
delay is introduced when a constant is called.

This scheme extends, for example, a basic processor
instruction as it is the sum (rD = rS + rT). It allows

operating with an immediate constant (rD = rS + K) and
making direct assignments to any register (rD = 0 + rT;
rD = 0 + K). This property is widely used in the
programming of digital filters, whose general structure
is:
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where all coefficients are constant.
External accesses are made through 256 synchronous

ports (each access is completed in only one clock cycle)
with direct addressing: pN = rS; rD = pM; where N and
M are any value between 0 and 255. It could be thought
that this addressing mode is less flexible than the indirect
one, but in the application field of this processor this
does not mean any limitation: it is usual that ports
correspond with memory positions used to extend the
processor spartan storage capacity, or they may connect
with physical devices that allow reading or generating
analog measures. Anyway, indirect addressing is always
possible using an external pointer, integrated in the same
chip; we must remember that we are designing within an
FPGA or ASIC.

The control of subroutines is similar to other
processors, but the user must dedicate a register (usually
‘r0’) to keep safe the returning address; later on, the
same register can be used to return to the calling point. If
nested subroutines are desired, either another register or
an external LIFO stack should be used.

3. The instruction set

The instruction set of the DSPuva16, as shown in the
table 1, is very simple. It consists only of 17 different
instructions, but it reaches a remarkable flexibility
thanks to how it uses the codification corresponding to
‘r0’, as it has been explained in the previous section.

Table 1. DSPuva16 instruction set.

Opcode Mnemonic Operation

0000 aaaa aaaa dddd call (rD) addr Absolute jump

0001 0xxx xxxx ssss ret (rS) Return (pc = rS)

0001 1fff aaaa aaaa jpFlag addr Relative jump

0010 dddd nnnn nnnn rD = pN Read from port

0011 ssss nnnn nnnn pN = rS Write to port

0100 dddd ssss tttt rD = rS * rT Normal product

0101 dddd ssss tttt rD = rS x rT Shifter product

0110 dddd ssss tttt rD = rD + rS * rT Positive MAC

0111 dddd ssss tttt rD = rD – rS * rT Negative MAC

1000 xfff dddd tttt ifFlag rD =  rT Cond. assignment

1001 xfff dddd tttt ifFlag rD = –rT Cond. assignment

1010 dddd ssss tttt rD = rS + rT Addition

1011 dddd ssss tttt rD = rS – rT Subtraction



1100 dddd ssss tttt rD = rS and rT Logic AND

1101 dddd ssss tttt rD = rS  or  rT Logic OR

1110 dddd ssss tttt rD = rS nor rT Logic NOR

1111 dddd ssss tttt rD = rS xor rT Logic XOR
Whenever a subroutine is called the returning address

is kept in a register, usually ‘r0’. The instruction code
dedicates only eight bits to the destination address, so it
seems that program length must be limited to only 256
instructions. This is more than enough for many cases,
because it is preferred to use several processors
executing different regulation loop, so programs are
usually short. Anyway, the available program length has
been extended using a simple and powerful mechanism:
there are up to five different models for this processor
(named ‘A’, ‘B’, ‘C’, ‘D’ and ‘E’), with programs of up
to 256, 512, 1K, 2K and 4K instructions. When an
absolute jump takes place (with the instruction ‘call’), it
is only possible to jump to even positions when the ‘B’
model is used, only to one of each four if the model is
‘C’, and so on. That means that all subroutines must be
correctly aligned in the program memory, using the
“#align” assembler directive. The processor model may
be specified using the “#model” directive.

Conditional jumps are always relative, just to avoid
the alignment problem. Like many other processors,
these jumps can be made to near positions (in a range of
±128 instructions, more or less), and the typical
conditions are the usual ones: ‘eq’, ‘ne’, ‘gt’, ‘ge’, ‘lt’,
‘le’, ‘v’ and ‘nv’. The same conditions can be used to
make conditional allocations, as happens in “rN = rN; iflt
rN = –rN”, that calculates the absolute value of a number
kept in a register.

This processor only use the direct addressing mode to
read (rD = pN) and to write (pN = rS) on external ports.
Indirect addressing is available using external pointers
but they are not usually needed in power electronics
applications, where only a reduced set of variables is
managed and algorithms are executed regularly over the
same data set. Physical accesses are synchronous and
they are executed in only one clock cycle. This does not
mean any limitation either, because external resources
are implemented with the same technology, in the same
chip, and therefore they can work at the same clock
frequency.

Instructions that make products, additions,
subtractions and logic operations, have a regular
structure that address two operands (any register except
‘r0’) and a destination register (any one). As said before,
the possibilities of the instruction set have been extended
allowing the cancellation of the first operand (‘rS’) and
the substitution of the second (‘rT’) by a 16-bit constant
(‘K’). In this way, immediate logic masks can be applied
to (rD = rS and/or K), the content of a register can be
inverted (rD = 0 nor rT) and any register can be
initialized with a constant (rD = 0 + K).

The most important operation of this processor, and
its reason of being, is the fixed-point product, with or
without accumulation. In general, two 16-bit normalized1

operands are taken and a 24-bit normalized result is
produced. All accumulations, additions and subtractions
are made with a resolution of 24 bits.

Another kind of product is also available, represented
as “rD = rS x rT”, which allows to make displacements.
The second operand is interpreted in <8.8> format, so
that any value can be multiplied by 1/128, 1/64..., 1/4,
1/2, 2, 4..., 32, 64, in addition to other intermediate
values, resulting in the desired adjustment.

Other typical instructions have been implemented
with “macros” recognized by the assembly language.
The ‘nop’ instruction, that does nothing, is replaced by
“r1 = r1 or r1” and the newly created ‘break’ instruction,
which allows setting simulator break-points, is replaced
by “r1 = r1 and r1”, doing nothing too.

4. The instruction cycle

As indicated above, the internal architecture of this
processor is RISC like. That means that it executes all of
its instructions regularly, in four clock cycles
particularly. Although, from the user’s point of view, all
instructions are executed in four cycles, certain
overlapping between instructions actually exists, and in
fact many instructions are finished when already the
following one is being executed. In any case, only one
latency effect must be considered, and it will be
explained later.

All instructions begin reading their 16-bit operation
code from the program memory, dedicating to this
function two clock cycles. After that, they use other two
cycles to read the operands, ‘rS’ first and then ‘rT’. The
latter is replaced by a constant read from the program
memory if ‘r0’ is referenced. Finally, in the first clock
cycle of the next instruction, the required operation is
made and the result is stored in ‘rD’.

1) It sends the PC to the program memory.
2) It gathers the operation code on IR.
3) The rS register is read to an ‘ACC’ register.
4) ‘RegT’ and ‘RegS’ get the rT and ACC values.
1') The processor executes rD = RegS op RegT.

The program counter ‘PC’ is increased during the
phase ‘2’ and, if a constant is read from the memory,
also during the phase ‘4’. If the operation requires a
jump (‘call’, ‘ret’, ‘jpFlag’), the program counter is
modified during the phase ‘4’.

Using this simple scheme all instruction except
products can be executed. As we’ll see in 5.2 section, the
internal multiplier of this processor requires four clock

                                                          
1 Normalized values are always in the [-1,+1) range. When 16 bits

are used to represent these values the highest value can be
0.99996948 and its format is named <1.15>: one integer bit, which
contains the sign, and fifteen fractional bits.



cycles to complete its operation, thus requiring a much
smaller size2 and it does not deteriorate the processor
working frequency. In order to carry out the products,
with or without accumulation, four clock cycles of the
next instruction and another two ones from the following
one are used:

1) It sends the PC to the program memory.
2) It gathers the operation code on IR.
3) The rS register is read to an ‘ACC’ register.
4) ‘RegT’ and ‘RegS’ get the rT and ACC values.
1') First stage of the MAC using RegS and RegT.
2') Second stage of the MAC using RegS and RegT.
3') Third stage of the MAC using RegS and RegT.
4') Fourth stage of the MAC using RegS and RegT.
1") One cycle because of multiplier segmentation.
2") Reads ‘rD’ and accumulates the MAC result.

In this way a latency is introduced and programmers
ought to consider it: the result of a product is not
available for general use in the immediately following
instruction, but in the later one. However, when it is used
for accumulation the latency is avoided, because that
operation is carried out a cycle later too. This issue can
be understand with the following example:

r1 = 0.27 // A value is allocated on r1
r2 = r1 + 0.32 // Right done, because r1 is available
r3 = r1 * r2 // Correct product between r1 and r2
r3 = r3 + r2 * r2// This use of r3 is correct
nop // We must wait for the result of r3
p4 = r3 // Now, but not before, r3 is r1*r2+r2*r2
Therefore, when the result of a product must be used,

except when it is made to accumulate on a register, it is
necessary to add a ‘nop’ or another instruction after the
multiplication, in order to give time to the result to be
calculated. This one is the only latency that introduces
the segmented architecture of this processor.

5. Internal architecture

The DSPuva16 has been designed using Verilog and
its based, as schematically shown in figure 2, on a RISC
architecture that uses two 24-bit buses, one for operands
and another one for results.

Figure 2. Internal architecture of the DSPuva16.

                                                          
2 As the calculation of products is divided in four stages the circuit

can be reduced to a quarter, approximately. Even so, the multiplier
needs about 250 basic cells, that is a half of the processor.

The program counter (‘PC’) has 8~12 bits, depending
on the chosen processor model. The operation codes are
received through ‘IR’ and they always have 16 bits.
Using the registered value of IR a segmented instruction
decoder activates each part of the circuit until
completing each operation.

The bank of registers, that maintain the values of  ‘r0’
to ‘r15’, is a 16x24 memory with synchronous writings
and asynchronous reading [4]. It requires only 24 basic
cells in some FPGA devices, which is equivalent to 5%
of all the processor.

The ALU is built using three different units that
realize logic operations, arithmetic ones and products.
After each instruction, the zero (‘Z’), sign (‘S’) and
overflow (‘V’) flags are updated, which allows carrying
out the corresponding allocations and conditional jumps.
It must be pointed out that this processor does not need
the carry flag (‘C’), because it is not necessary for single
precision operations.

Two different buses are used to interchange data with
external elements, one to send data and another one to
receive them. This method avoids additional tri-state
buffers that, indeed, are not necessary within a chip.

5.1. Processor based on two internal buses
Many RISC processors have three or more buses at

the moment, which even allow to realize all the
instruction operations in only one clock cycle.

Since this processor needs four clock cycles to
complete each product, and that the use of a third bus
would lead to use dual-port memories for the bank of
registers3, it has been chosen to dedicate only one bus for
the operands. Through this bus it can be seen the values
of ‘rD’ during phases ‘1’ and ‘2’ and then it is left for
‘rS’ and ‘rT’ during the last two phases of each
instruction cycle.

The bus for results is dedicated to collect the output
of all ALUs and other sources: the input of external data
when reading from a port and the value of the program
counter when a subroutine is called, to keep the returning
address in a register.

5.2. Four step multiplier
The central operation of this processor is the

multiplication. It operates on two 16-bit values and
generates a 32-bit result. Only 24 bits are available
finally. In general the operands are in <1.15> format and
the result is in <1.23> format.

In order to build the multiplier it has been decided to
divide the operation in four stages4, multiplying in each
step a 16-bit operand by another one of only four bits,

                                                          
3 These memories allow two simultaneous asynchronous readings

and one synchronous write when the clock cycle is finishing, but
they occupy twice the space of the memories used by this
processor.

4 Not all FPGA devices do have embedded multipliers.



emitting a 20-bit intermediate result. This operation can
be made with only four adders and an intermediate
segmentation register, as shown simplified in figure 3. If
we had tried to operate in a single clock cycle we would
have needed 15 adders and the latency would have been
greater, because of the segmentation registers.

Figure 3. Segmented structure of the multiplier.

6. Development environment

The integrated development environment (IDE) of
this processor fully covers its needs, at least while it is
applied to the control of power electronics converters.
Typical programs executed by the DSPuva16 processor
usually have between 50 and 1.000 instructions, which
correspond with typical working cycles of 5 to 100
microsecond. Therefore, programming in assembly
language is sufficient, and the syntax used by the
instructions is quite comfortable, as it has possibly been
appreciated above.

Figure 4. The IDE for the DSPuva16.

The IDEuva16 program is executed in graphics mode5

and it incorporates a simple text editor, a complete
C-like assembler with preprocessor, a simulator and a
connection to the physical processor to control it in
emulator mode using a suitable interface. Figure 4
displays the result of a small simulation in which the
processor calculates “r2 = sin(r1); r3 = cos(r1)” for “r1 =
0.4·p”. It needs 14.0 microseconds to complete this
operation using a Cordic technique and working at 40
MHz (10 MIPS).

After editing and saving the assembler source code,
where directives such as “#include”, “#define” and
“#ifdef” can be used, the source may be assembled by
pressing a button. The process takes few seconds. Then,
a step-by-step simulation or a simulation until a ‘break’
instruction can be done. Thousands or even hundreds of
thousands of instructions can be executed in a single
step, because simulation times are usually several or tens
of milliseconds. The completion of each process on a
typical DC/AC application takes few minutes using a
3 GHz computer. During simulations the state of the
processor can be seen and intermediate results can be
graphically displayed in a dynamic window.

Figure 5. Graphics output of simulations.

When algorithms and assembler codes are stable
enough, designers can use the “emulator mode”: a real
DSPuva16 is synthesized and implemented on an FPGA
that is connected to the computer through the parallel
port in SPP or EPP mode. The own IDE transfers to the
DSP’s program memory the result of the assembly, and
following its state of reset/run is controlled. When the
user stops the processor, the IDE automatically captures
the intermediate or final results emitted by the processor
through several of its ports, displaying them on the
screen of the computer, as can be seen on figure 6.

Figure 6. Graphics output of emulations.

                                                          
5 Currently English and Spanish versions on Win95/98/2K/XP are

available. A Linux version will be released very soon.



The main difference between the simulation and the
emulation is that the former is made completely in the
computer, whereas the latter is executed in real or almost
real time6 on the physical equipment, implemented at the
moment in a Xilinx Spartan-II FPGA7.

7. Multi-processor systems

The main advantage of this DSP is its reduced size: it
only needs about 12% of a 200K-gates FPGA. That
means that, although a DSP alone cannot make the entire
control task, is not too expensive to add others until the
desired performance is reached. In a photovoltaic power
application that is under development, and where this
DSP is used for control, it is necessary to synchronize
the equipment with the mains and to regulate the active
and reactive powers; this tasks are covered by a first
DSP with a working cycle of 25 microseconds. It is also
necessary to control every 5 microseconds the DC/AC
output currents and the commutation frequency of the
equipment; for this task we have synthesized a second
DSP. At the moment, the behaviour of the electrical
circuit has been emulated every microsecond by a third
DSP that operates in 60 microseconds. All this digital
circuit requires about 100K gates (50%) of the FPGA.

For the communication between processors in this
applications we use dual port synchronous memories [4]:
a DSP can read and write at any time using one port,
while another DSP can read, but not write, using the
other one. For them, all accesses are as we have seen:
direct accesses to ports. Using these memories, which
occupy very little space in an FPGA, it is not necessary
to worry about conflicts when sharing resources: both
processors can use the common memory at any time. It
is not necessary to synchronize transfers or signalling
them either, because the bandwidth of involved
magnitudes is far below the working cycle of these
processors, reason why it does not matter that read
values by the destination processor correspond with
present values or previous ones, emitted by another DSP.

8. Conclusions

This article has shown how the DSPuva16 processor
is and how, in spite of its limited features, it can easily
solve complex problems of control in real time, simply

                                                          
6 Before beginning with the power tests on the real converter its

better to physically prove the control of DSPs using an emulated
electrical plant. This task can be carried out using another DSP,
which calculates how the electrical circuit would behave.
Nevertheless, its work cycle is usually much greater than the others,
which forces to add additional delays at the others so that they must
wait, loosing the pure real time characteristics. Anyway, FPGA
emulation finishes in seconds what PC simulation takes several
minutes [1].

7 The results of this article have been proven on a Xilinx XC2S200-
PQ208 working at 40 MHz.

adding as many processors as needed, but always within
a chip, usually a FPGA.

Its main limitation is that it operates with few data
and using fixed-point values, but since we have seen
these topics do not mean any problem in the control of
power electronic converters, because all physical
magnitudes are easy to normalize and it is not difficult to
keep them in a safe range, except during failure
situations that cause the shutdown of the equipment and
the stop of control.
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