
A proposal for ASM++ diagrams

Santiago de Pablo, Santiago Cáceres, Jesús A. Cebrián
University of Valladolid

Valladolid, Spain
Email: sanpab,sancac,jesceb@eis.uva.es

Manuel Berrocal
eZono GmbH
Jena, Germany

Email: manuel@ezono.com

Abstract– Algorithmic State Machines are a 40-year old tool

for the design of digital circuits. They are a good alternative to
Finite State Machines, where only states can be properly
described, but actions must be annotated as lateral comments.
However, current notation for these diagrams has several
limitations for medium-large designs, and often lateral
annotations are finally needed. This paper presents an alternative
notation for ASM diagrams, trying to overcome these limitations.
This new notation is more consistent and thus more convenient
for CAD tools.

I. INTRODUCTION

The Algorithmic State Machine (ASM) method for
specifying digital designs, in an abstract behavioral form, was
originally documented by Claire [1] who worked at the
Electronics Research Laboratory of Hewlett Packard Labs,
based on previous developments made by Osborne at the
University of California at Berkeley [2]. Since then it has been
widely applied to assist designers in expressing abstract
algorithms and to support their conversion into hardware [3].
Many texts on Digital Logic Design cover the ASM method in
conjunction with other methods for specifying Finite State
Machines (FSM), namely state tables and state diagrams [4][5].
Whereas most designers simply use them as a means to specify
the control of digital systems using complex FSM models
[6][7][8][9], few texts actually use them to design whole
systems.

State diagrams are weak at capturing the structure behind
complex sequencing. The problem is that they do not describe
properly the actions that must be executed as the control unit
evolves through different states. Meanwhile, ASM are a good
alternative because they prevent inconsistent diagram
specifications and they are easier to read and maintain.
Nevertheless, some authors consider them impractical for large
algorithms and hard to manage because of their graphical
interface [10], so modern Hardware Description Languages
(HDL) are usually preferred.

Nowadays ASM diagrams are used at different stages of the
design flow in multiple designs:

- They are useful during the concept capturing of a digital
development [6], because it is easy to materialize ideas using
them.

- During the detailed design specification, when the order
between different tasks becomes complex or confuse, these
diagrams help clarifying the ordering and interactions between
tasks.

- They can be used for design documentation, after they have
been written and verified, because they describe in detail the
actions performed and the timing of those actions.

- They are also used to generate testbenches.
Current notation for ASM diagram is compact and valid for

control-oriented designs, those where the main task of the
circuit is to generate control signals. But when a design
focuses mainly on its data path, this notation has several
limitations.

This paper presents a different notation called “ASM++
diagrams” aiming to improve ASM for more complex designs
and more suitable for automatic conversion into HDL code.

II. TRADITIONAL ASM DIAGRAMS

Traditional ASM diagrams use three types of boxes: the
“state boxes” –with rectangular shape– define the beginning of
each clock cycle and describe unconditional operations that
must be executed during or at the end of that cycle; “decision
boxes” –diamond ones– are used to test inputs or internal
values to determine the execution flow; and finally
“conditional output boxes” –oval ones– indicate those
operations that are executed only when previous conditions are
valid. An “ASM block” includes all operations and decisions
that are or can be performed during each execution cycle.

These ideas are illustrated in fig. 1, where a 12x12 unsigned
multiplier has been implemented using two states: during ‘Idle’
state it waits for two new operands given at ‘in_a’ and ‘in_b’
inputs when the ‘go’ signal is asserted to one; the second state,
named ‘Loop’, executes twelve additions and shifts in twelve
clock cycles to compute the desired product. At the end, a
‘done’ signal validates the result given at the output ‘p’. This
circuit is initialized using an asynchronous signal called ‘reset’.

Fig. 1. An example of traditional ASM.

The advantages of this representation over FSM are evident:
not only the evolution between states has been described, but
also the operations in and between states have been included;
additionally, conditions can be built up incrementally and later
combined into a single boolean condition [6]. However, they
have several properties that may be seen as disadvantages:

- They use the same box –rectangular ones– for new states
and unconditional operations at those states. Because of this
property, ASM diagrams are more compact, but they are also
more difficult to read.

- Sometimes it is difficult to differentiate the frontier
between states. The complexity of some states requires the use
of dashed boxes or even different colors for different ASM
blocks.

- Due to the double meaning of rectangular boxes,
conditional operations must be represented using a different
shape, the oval boxes.

- Additionally, designers must use lateral annotations for
state names and codes, for reset signals or even for links
between different parts of a design (see fig. 1).

- Finally, the width of signals and ports cannot be specified
by current notation.

The new notation proposed in this paper tries to solve all
these problems.

III. PROPOSED NEW NOTATION: ASM++ DIAGRAMS

The first and main change introduced by this new notation is
the use of a specific box for states –we propose oval boxes,
very similar to those circles used in bubble diagrams– so now
all operations may share the same rectangular box. Diamonds
are kept for decision boxes because they are commonly
recognized and accepted.

As shown in fig. 2, the resulting ASM++ diagram is less
compact, but more clear. There is no need for ASM blocks
because limits between states are clearly defined by state
boxes. All lateral annotations –the nightmare of CAD
developers– have disappeared, and designers have more

Fig. 2. An example of the new ASM++ notation.

freedom to write the operations in the order they want: all
operations written from one state to the next one are executed
in parallel, but sometimes unconditional operations are better
written after conditional ones, as shown in ‘Loop’ state. The
use of a box for states also simplifies the use of links between
different parts of a diagram. This feature helps in writing
complex designs that cannot fit in a single page.

The following code shows how ASM++ diagrams can be
easily translated into Verilog (or VHDL) code. After a quick
look the correspondence between this diagram and its code is
evident.

 // All signals must be declared before this line
 parameter Idle = 1’b0,
 Loop = 1’b1; // State codes
 always @ (posedge clk or posedge reset)
 begin
 if (reset) begin // Initialization sequence
 state <= Idle; // Going to the first state
 done <= 0; // Indicated by designer
 {a, b, p, j} <= 0; // They depend on reset!
 end else case (state)
 Idle: // First state
 begin
 done <= 0;
 if (go) begin // Waiting for ‘go’
 a <= in_a; // 12 bits assignment
 b <= {12’h000, in_b}; // 24 bits assignment
 p <= 0; // 24 bits assignment
 j <= 0; // 4 bits assignment
 state <= Loop; // Jump to next state
 end
 end
 Loop: // Second state
 begin
 if (a[0])
 p <= p + b; // Conditional operation
 a <= a >> 1; // Unconditional operations
 b <= b << 1; // The order ...
 j <= j + 1; // ... is decided by user
 if (j == 11) begin
 done <= 1; // Indicate it finish
 state <= Idle; // Conditional jump
 end
 end
 default: // Because of security reasons
 state <= Idle;
 endcase
 end

A second change proposed in this paper –the initialization

box at the beginning of the ASM++ diagram will be explained
later– is to use different operation boxes for assignments and
assertions. All signals used in the previous example have a
synchronous behavior, so they are all assigned to new values at
the end of each clock cycle. But other signals may need to be
asserted to a different value during the current clock cycle,
asynchronously.

The following example, where a synchronous RAM memory
is initialized to a fixed value, illustrates this idea. As above, a
C-like notation for all written expressions is also suggested, but
most designers may prefer the use of VHDL-like or Verilog-
like expressions.

Fig. 3. An example of ASM and ASM++ with assertions.

Traditional ASM diagrams (left side of fig. 3) use different

operators (“=” and “ ”) for synchronous assignments and
asynchronous assertions. We propose (as shown on the right
side of the same figure) the use of rectangular boxes for
assignments, but boxes with bowed sides for assertions. Thus,
the same equal symbol (“=”) can be used for both, assignments
and assertions.

The Verilog code for this diagram is shown below. It should
be noted that asynchronous assertions ought to be written out
of the ‘always’ (or ‘process’) block, because they are not
sensible to ‘clk’ edges or to ‘reset’ signal.

 // Use `define to set FIRST, LAST and VALUE.
 parameter Idle = 1’b0, InitMem = 1’b1;
 always @ (posedge clk or posedge reset)
 begin
 if (reset) begin
 state <= Idle;
 mem_addr <= 0;
 end else case (state)
 Idle:
 begin
 if (go) begin
 mem_addr <= `FIRST;
 state <= InitMem;
 end
 end
 InitMem:
 begin
 mem_addr <= mem_addr + 1;
 if (mem_addr == `LAST)
 state <= Idle;
 end
 default:
 state <= Idle;
 endcase
 end
 assign mem_we = (state == InitMem) ? 1’b1 : 1’b0;
 assign mem_data_in = `VALUE;

This is the main reason for differentiating synchronous
assignments –codified into an ‘always’ block– from
asynchronous assertions –codified out of it. When the code is
handwritten [11][12], designer must look for all assertions
after the main block is written down. In order to understand
the behavior of the circuit, a different shape also helps.

The third proposed change is the introduction of a specific

box for the initialization sequence and other global definitions.
It has at least two applications:

- When the asynchronous reset signal arrives, the circuit
must go immediately to a well defined state, ‘Idle’ in these
examples. But this duty is usually not enough for most
circuits, where other signals also need to be initialized. This is
the case of the ‘done’ signal in fig. 2, that needs to be asserted
to ‘0’. This one would be the default behavior.

- When synchronous signals are not used in one or more
states, the default behavior of the circuit must be “to keep their
last value”, and that is the way all VHDL and Verilog
compilers work. But what happens when an asynchronous
signal is not used in one or more states? The preferred value
for those situations is “don’t care”, as happens with
‘mem_data_in’ signal in fig. 3. But in the same figure, for
example, signal ‘mem_we’ must be tied to ‘0’ when not used.
We propose the use of an optional “defaults” section at the
beginning of all diagrams, because the alternative to it is to
assert those signals in all states that do not use them, as shown
in ‘Idle’ state with traditional notation.

For an ASM++ compiler –a program that generates Verilog
and/or VHDL code from the ASM++ diagram– additional
sections are required in this box (see fig. 4): ‘in’, ‘out’ and
‘inout’ must be used to declare the name, behavior and size of
all inputs and outputs; ‘signal’ is required to declare the size of
all signals –their behavior will be described later by the
diagram–; ‘define’ can be used for definitions, ‘sync’ is needed
for synchronous circuits and ‘design’ will be used to specify
the design name and optionally its parameters/generics. If
other sub-modules were hierarchically connected to this one,
they may also be declared using this box. Anyway, these ones
are only several examples.

With all these changes, ASM++ diagrams are obviously less

compact, but more consistent. They are now easier to read and
understand, and thanks to these changes they can be processed
by CAD tools.

IV. A COMPLETE ASM++ EXAMPLE

A final example is shown in fig. 4, where a simplified
version of a FIFO –with no generation of ‘full’ or ‘empty’
signals– is designed. Thanks to the global box this ASM++
diagram may lead to a Verilog/VHDL synthesizable code,
because a compiler has all needed information to generate it.
This code (not generated automatically yet, the compiler is still
under work) can be seen later.

Fig. 4. A full ASM++ example ready for compilation.

// An ASM++ example ready for compilation
module small_LIFO (clk, reset, push, pop, data_in, data_out);

 parameter depth = 4; // It means 2^4 = 16 levels
 parameter width = 8; // 8-bit data width

 input clk, reset;
 input push, pop;
 input [width–1:0] data_in;
 output [width–1:0] data_out;

 reg [width–1:0] stack [0:(1<<depth)–1];
 reg [depth–1:0] sp; // StackPointer
 wire [depth–1:0] used_sp; // Used pointer

 always @ (posedge clk or posedge reset)
 begin
 if (reset) sp <= 0; // Initialize StackPointer
 else if (push) sp <= sp + 1;
 else if (pop) sp <= sp – 1;
 end

 always @ (posedge clk)
 begin
 if (push) stack[used_sp] <= data_in;
 end

 assign used_sp = push ? sp : sp – 1;
 assign data_out = ~push & pop ? stack[used_sp] : {width{1’bz}};

endmodule /// small_LIFO

This circuit has a state box, named ‘Main’, but it has no

states at all. Indeed, a circuit only needs states if it has two or
more states, but this FIFO only has one. Additionally, for
‘used_sp’ and ‘data_out’ signals, the state box has been used as

the beginning and end of their description, but there is no
relation with any clock signal because they are asynchronous
ones.

V. CONCLUSIONS

This article has presented an alternative notation for ASM
diagrams. It makes diagrams easier to read, write and
understand for large designs. It can be used as a primary tool
for design or as a suitable representation for supervision and
documentation.

The ASM++ notation can be Verilog/VHDL independent if
the C-like proposal for expressions is accepted. It gives more
freedom to designers to decide the writing order of operations
and allows the specification of signal widths. In future releases
it will also allow multiple threads and multiple clock sources.
At last, this proposal is a more consistent notation, free from
lateral annotations, thus more convenient for CAD tools. An
ASM++ compiler is under work.

ACKNOWLEDGMENTS

The authors would like to acknowledge the financial support
of eZono GmbH, Jena, Germany. Our thanks also to Dolores
García, David Ferrer, Ruben Herrero and Roberto Campo,
students at the University of Valladolid, Spain, for their work
and comments about this notation and methodology.

REFERENCES
[1] C.R. Claire, Designing Logic Using State Machines, McGraw-Hill, 1973.

Referenced by [2].
[2] S. Leibson, “The NMOS II Hybrid Microprocessor: Fusing silicon,

ceramic, and aluminum with rubber baby buggy bumpers”, online at
http://www.hp9825.com/html/hybrid_microprocessor.html, revised on
March 2007.

[3] V.R.L. Shen and F. Lai, “Requirements Specification and Analysis of
Digital Systems Using Fuzzy and Marked Petri Nets”, IEEE Transactions
on Systems, Man and Cybernetics, Vol. 32, No. 1, pp. 149-159, January
2002.

[4] D.D. Gajski, Principles of Digital Design, Prentice Hall, Upper Saddle
River, NJ, 1997.

[5] J.P. Hayes, Introduction to Digital Logic Design, Prentice-Hall, 1993.
[6] A.T. Bahill et al., “The design-methods comparison project”, IEEE

Transactions on Systems, Man and Cybernetics, Vol. 28, No. 1, pp. 80-
103, February 1998.

[7] S. Baranov, “Synthesis of control units for mobile robots”, Second
EUROMICRO workshop on Advanced Mobile Robots, pp. 80-86, 1997.

[8] W.F. Lee et al., “An ASM-based ASIC for automobile accelerometer
applications”, First IEEE Asia Pacific Conference on ASICs, pp. 127-
130, 1999.

[9] M.S. Nixon, “On a Programmable Approach to Introducing Digital
Design”, IEEE Trans. on Education, Vol. 40, No. 3, pp. 195-206, August
1997.

[10] E. Bergeron, X. Saint-Mleux, M. Feeley, and J.P. David, “High Level
Synthesis for Data-Driven Applications”, 16th IEEE International
Workshop on Rapid System Prototyping, pp. 54-60, 2005.

[11] M. Chang, “Teaching Top-down Design Using VHDL and CPLD”, IEEE
FIE’96 Proceedings, pp. 514-517, 1996.

[12] T.A. Giuma, D. Welch, and K. MacDonald, “Computer-Aided-Design
Platform For Sequential Systems”, IEEE Southeastcon’97 Proceedings,
pp. 79-81, 1997.

