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Abstract– Algorithmic State Machines are a 40-year old tool 
for the design of digital circuits.  They are a good alternative to 
Finite State Machines, where only states can be properly 
described, but all operations must be annotated as lateral 
comments.  This paper shows the inner relationship between ASM 
diagrams and modern languages used to describe hardware and it 
proposes several modifications to the standard methodology to 
allow automated tools to produce Verilog or VHDL code from 
these diagrams.  The new notation is more complete and 
consistent and thus more convenient for CAD tools. 

 

I. INTRODUCTION 

The Algorithmic State Machine (ASM) method for 
specifying digital designs, in an abstract behavioral form, was 
originally documented by Clare [1] who worked at the 
Electronics Research Laboratory of Hewlett Packard Labs, 
based on previous developments made by Osborne at the 
University of California at Berkeley [2].  Since then it has been 
widely applied to assist designers in expressing abstract 
algorithms and to support their conversion into hardware [3].  
Many texts on digital logic design cover the ASM method in 
conjunction with other methods for specifying Finite State 
Machines (FSM), namely state tables and state diagrams [4].  
Whereas most designers simply use them as a means to specify 
the control of digital systems using complex FSM models [5], 
[6], [7], [8], few texts actually use them to design whole 
systems, except [9] and [10], that actually increment their 
possibilities with higher level features. 

State diagrams do not describe properly the actions that must 
be executed as the control unit evolves through different states.  
Meanwhile, ASM are a good alternative because they prevent 
inconsistent diagram specifications and they are easier to read 
and maintain.  However, most authors consider them 
impractical for large algorithms and hard to manage because of 
their graphical interface [11], so modern hardware description 
languages (HDL) are usually preferred to design at the register 
transfer level (RTL). 

Our engineering students at the University learn basic 
electronic design using schematic capture tools and later on 
they increment their skills on more complex RTL designs 
using VHDL and Verilog.  We have seen that FSM are useful 
to give the students an overall view of a design, but they are 
limited for detailed descriptions.  Additionally, we have found 
that ASM diagrams are useful during the concept capturing of 
a digital development [5], because it is easy to materialize 
ideas using them.  During the detailed design specification, 

when the order between different tasks becomes complex or 
confuse, these diagrams help clarifying the ordering and 
interactions between tasks. 

However, we have found that current ASM notation cannot 
properly describe real-life circuits, which usually have several 
FSM running in parallel with complex interactions between 
them.  This paper presents a different notation, called “ASM++ 
diagrams”, aiming to improve ASM for more complex designs 
and more suitable for automatic conversion into HDL code. 

 

II. TRADITIONAL ASM DIAGRAMS 

Traditional ASM diagrams use three types of boxes: the 
“state boxes” –with rectangular shape– define the beginning of 
each clock cycle and may include unconditional operations that 
must be executed during or at the end of that cycle; “decision 
boxes” –diamond ones– are used to test inputs or internal 
values to determine the execution flow; and finally 
“conditional output boxes” –oval ones– indicate those 
operations that are executed only when previous conditions are 
valid.  An “ASM block” includes all operations and decisions 
that are or can be performed simultaneously during each 
execution cycle. 

These ideas are illustrated in fig. 1, where a 12x12 unsigned 
multiplier has been implemented through additions and shifts 
using two states: during ‘Idle’ state this circuit waits for two 
new operands given at ‘inA’ and ‘inB’ inputs when the ‘go’ 
signal is asserted to one; the second state, named ‘Loop’, 
executes twelve additions and shifts in twelve clock cycles to 
compute the desired product.  At the end, a ‘done’ signal 
validates the result given at the output ‘outP’.  This circuit is 
asynchronously initialized using an active high signal called 
‘reset’ and then it is synchronized with a ‘clk’ signal not 
included in this diagram. 

 

 
Fig. 1.  An example of traditional ASM. 



The advantages of this representation over FSM are evident: 
not only the evolution between states has been described, but 
also the operations in and between states have been included; 
additionally, conditions can be built up incrementally and later 
combined into a single boolean condition [5].  However, they 
have several properties that may be seen as disadvantages: 

- They use the same box –with rectangular shape– for new 
states and unconditional operations executed at those states.  
Because of this property, ASM diagrams are compact, but they 
are also more rigid and difficult to read. 

- Sometimes it is difficult to differentiate the frontier 
between different states.  The complexity of some states 
requires the use of dashed boxes (named ASM blocks) or even 
different colors for different states. 

- Due to the double meaning of rectangular boxes, 
conditional operations must be represented using a different 
shape, the oval boxes.  But, actually, all operations are 
conditional, because all of them are state dependent. 

- Additionally, designers must use lateral annotations for 
state names, for reset signals or even for links between 
different parts of a design (see fig. 1). 

- Finally, the width of signals and ports cannot be specified 
when using the current notation. 

The new notation proposed in this paper tries to solve all 
these problems. 

 

III. BASIC FEATURES OF ASM++ DIAGRAMS 

The first and main change introduced by this new notation, 
see fig. 2, is the use of a specific box for states –we propose 
oval boxes, very similar to those circles used in bubble 
diagrams– so now all operations may share the same 
rectangular box.  Diamonds are kept for decision boxes 
because they are commonly recognized and accepted. 

As shown in fig. 2, the resulting ASM++ diagram is less 
compact, but more clear and flexible.  Former ASM blocks 
become useless because limits between states are clearly 
defined by state boxes.  All lateral annotations have 
disappeared when using the new notation and designers have 
more freedom to write operations using any arbitrary order: all 
operations written from one state to the next one are executed 
in parallel, but sometimes unconditional operations are better 
written after conditional ones, as shown in ‘Loop’ state where 
shifts are specified below the conditional addition.  The use of 
a specific box for states also simplifies the use of links between 
different parts of a diagram.  This feature helps in writing 
complex designs that cannot fit in a single page. 

More boxes are described in the following section, but an 
important property of ASM++ can be pointed out now: all 
boxes use standard HDL expressions, either Verilog (this case) 
or VHDL (see fig. 6).  This feature helps during the phase of 
handwriting the final HDL code, but also it is decisive for the 
ASM++ compiler that is in progress: it will generate HDL code 
for simulators and synthesizers based on these diagrams. 

 

 
Fig. 2.  Basic boxes of the new ASM++ notation. 

 
The following code (see also fig. 3 to complete the circuit 

definition) shows how ASM++ diagrams can be easily 
translated into HDL code.  After a quick look the 
correspondence between this diagram and its code is evident. 

 
 parameter N = 12;        // See fig. 3  
 // …  
 parameter Idle = 1’b0,  Loop = 1’b1;   // State codes  
 always @ (posedge clk or posedge reset)  // See also fig. 3 
 begin 
  if ( reset ) begin     // Initialization sequence 
   done <= 0;      // Indicated by designer 
   state <= Idle;     // Going to the first state 
  end else case (state)  
   Idle:      // First state 
   begin 
    done <= 0; 
    if ( go ) begin    // Waiting for ‘go’ 
     regA <= inA;   // 12 bits assignment 
     regB <= inB;   // 24 bits assignment 
     outP <= 0;    // 24 bits assignment 
     regJ  <= 0;    //   4 bits assignment 
     state <= Loop;   // Jump to next state 
    end 
   end  
   Loop:      // Second state 
   begin 
    if ( regA[0] ) 
     outP <= outP + regB; // Conditional operation 
    regA <= regA >> 1;   // Unconditional operations 
    regB <= regB << 1;   // The order ... 
    regJ  <= regJ + 1;     // ... is decided by user 
    if ( regJ == N–1 ) begin 
     done <= 1;    // Indicate it finishes 
     state <= Idle;   // Conditional jump 
    end 
   end  
   default:      // Because of security reasons 
    state <= Idle;  
  endcase 
 end  // always block 
 

IV. ADDITIONAL FEATURES OF ASM++ DIAGRAMS 

Figure 2 describes the internal architecture of the proposed 
module, but says nothing about its external interface, the width 
of internal signals, or about synchronization.  For an automated 



tool that generates HDL code from this specification other 
boxes are clearly required.  Therefore, the new ASM++ 
notation adds more boxes to face these requirements, as shown 
in fig. 3.  Though, this paper modifies what was proposed at 
[12] and [13]. 

From up to down, the first box of fig. 3 specifies the design 
name (“multiplier”) and its optional parameters (or generics, 
using the VHDL notation).  Following, a port-like box allows a 
detailed definition of the module interface: all inputs and 
outputs can be described using the preferred HDL language.  
Obviously, bigger designs may use more than one of these 
interface boxes. 

The third box has a card-like shape and is used to introduce 
general HDL code and compiler directives: in this case, it is 
used to declare and specify the size of all internal signals 
(except the variable used for the resulting state machine). 

Afterwards, a small box indicates that the synchronism of 
this whole circuit will be managed using the ‘clk’ signal, and 
finally the active high ‘reset’ signal will be used to 
asynchronously initialize the ‘done’ output and the internal 
state, starting at the first state named ‘Idle’ (see also fig. 2). 

 

 
Fig. 3.  Additional ASM++ boxes required to generate HDL code. 

 
Using these new boxes, designers are now capable of 

completely describe a module and generate the subsequent 
HDL code for simulation and synthesis.  However, looking 
with greater attention to the signals of these diagrams, we 
found that all of them exhibit a synchronous behavior: all 
operations included in rectangular boxes are registered at the 
end of each clock cycle.  To improve the designer possibilities, 
a new box for asynchronous assertions is also provided: they 
have bent sides, as shown on fig. 4, and describe operations 
that are performed during the present clock cycle.  

Furthermore, a new box to describe default values has been 
included: when synchronous signals are not used in one or 
more states, the default behavior of those signals must be to 
keep constant their last value, and that is the way all VHDL 
and Verilog compilers work.  But what happens when an 

asynchronous signal is not used in one or more states?  The 
proposed value for those situations is “don’t care” to minimize 
the generated combinatorial logic (see for example the HDL 
code for 'data_out' on fig. 4, it actually does not depend on the 
value of 'pop').  A new box has been included to modify these 
default behaviors, for synchronous and asynchronous signals; 
otherwise, designers would be required to write their 
specifications once and again. 

 

 
Fig. 4.  An ASM++ example with asynchronous assertions. 

 
The full Verilog code for the diagram of fig. 4 is shown 

following.  It should be noted that asynchronous assertions 
ought to be written out of the ‘always’ (or ‘process’) block, 
because they are not sensible to ‘clk’ edges or to ‘reset’ signal. 

 
module small_fifo (clk, reset,  
      push, pop, data_in, data_out, empty, full); 
 

 parameter depth =  4;    // It means 2^4 = 16 levels 
 parameter width  =  8;    // 8-bit data width 
 

 input     clk, reset; 
 input     push, pop; 
 input [width–1:0]  data_in; 
 output [width–1:0]  data_out; 
 output     empty, full; 
 

 reg  [width–1:0]  fifo  [0:2**depth–1]; 
 reg  [depth–1:0]  write_pointer; 
 reg  [depth–1:0]  read_pointer; 
 reg      last; 
 

 always @ (posedge clk or posedge reset) 
 begin 
  if (reset) begin 
   write_pointer <= 0;  // Initialize pointers 
   read_pointer <= 0; 
   last    <= 0; 
  end 



          else begin 
   if (push) write_pointer <= write_pointer + 1; 
   if (pop)  read_pointer <= read_pointer + 1; 
 

   if         (push & ~pop) last <= 1; 
   else if (pop & ~push) last <= 0; 
  end 
 end 
 

 always @ (posedge clk) 
 begin 
  if (push)  fifo[write_pointer] <= data_in; 
 end 
 

 assign data_out = fifo[read_pointer]; 
 

 assign empty = (read_pointer == write_pointer) & (last == 0) ? 1 : 0; 
 assign full    = (read_pointer == write_pointer) & (last == 1) ? 1 : 0; 
 

endmodule /// small_fifo 
 
The main reason for differentiating synchronous assignments 

–codified into an ‘always’ block– from asynchronous 
assertions –codified out of it, is that when code is handwritten 
[14], [15], designer must look for all assertions after the main 
block is written down.  In order to understand the behavior of 
the circuit, a different shape also helps. 

 

V. HIERARCHICAL DESIGN USING ASM++ DIAGRAMS 

A top level example with a hierarchical design is shown in 
fig. 5.  It includes all previous modules to build a 12x12 
multiplier with two input FIFOs and an output FIFO to 
maximize its throughput.  As can be seen, when a module is 
instantiated in an ASM++ diagram, the proposal is that a full 
set of signals (with the name of the instantiated module, a dot, 
and the name of each module port) are automatically available 
to easy its connections with other modules.  The result is clear, 
as can be seen below, and designers write only what they need. 

 

 
 

Fig. 5.  A hierarchical design using ASM++ diagrams. 
 
The Verilog code for the diagram of fig. 5 is shown at the 

right column.  The relationship between diagrams and HDL 
code becomes evident again.  It is also remarkable the amount 
of code saved when using ASM++ diagrams, because most 
redundant lines required by Verilog and VHDL are avoided. 

module top_level (clk, reset,  
     pushA, pushB, inA, inB, busy, 
     popP, outP, ready); 
 

 parameter depth =   4;    // 16 levels at each FIFO 
 parameter width  = 12;    // 12-bit unsigned integer 
 

 input     clk, reset; 
 

 input     pushA, pushB; 
 input    [width–1:0] inA, inB; 
 output     busy; 
 

 input     popP; 
 output [2*width–1:0] outP; 
 output     ready; 
 

 wire     activate; // Internal signal 
 

 wire    fifoA_clk, fifoA_reset; 
 wire     [width–1:0] fifoA_data_in, fifoA_data_out; 
 wire    fifoA_push, fifoA_pop, fifoA_empty, fifoA_full; 
 small_fifo  # (depth <= depth, width <= width)  fifoA  ( 
     .clk(fifoA_clk), .reset(fifoA_reset), 
     .push(fifoA_push), .pop(fifoA_pop), .data_in(fifoA_data_in), 
     .data_out(fifoA_data_out), .empty(fifoA_empty), .full(fifoA_full) ); 
 

 wire    fifoB_clk, fifoB_reset; 
 wire     [width–1:0] fifoB_data_in, fifoB_data_out; 
 wire    fifoB_push, fifoB_pop, fifoB_empty, fifoB_full; 
 small_fifo  # (depth <= depth, width <= width)  fifoB  ( 
     .clk(fifoB_clk), .reset(fifoB_reset), 
     .push(fifoB_push), .pop(fifoB_pop), .data_in(fifoB_data_in), 
     .data_out(fifoB_data_out), .empty(fifoB_empty), .full(fifoB_full) ); 
 

 wire    AxB_clk, AxB_reset, AxB_go, AxB_done; 
 wire     [width–1:0] AxB_inA, AxB_inB; 
 wire  [2*width–1:0] AxB_outP; 
 multiplier  # (width)  AxB  ( 
     .clk(AxB_clk), .reset(AxB_reset), 
     .inA(AxB_inA), .inB(AxB_inB), .go(AxB_go), 
     .outP(AxB_outP), .done(AxB_done) ); 
 

 wire    fifoP_clk, fifoP_reset; 
 wire  [2*width–1:0] fifoP_data_in, fifoP_data_out; 
 wire    fifoP_push, fifoP_pop, fifoP_empty, fifoP_full; 
 small_fifo  # (depth <= depth, width <= 2 * width)  fifoP  ( 
     .clk(fifoP_clk), .reset(fifoP_reset), 
     .push(fifoP_push), .pop(fifoP_pop), .data_in(fifoP_data_in), 
     .data_out(fifoP_data_out), .empty(fifoP_empty), .full(fifoP_full) ); 
 

 assign fifoA_clk = clk;   // Default connections 
 assign fifoB_clk = clk; 
 assign AxB_clk = clk; 
 assign fifoP_clk = clk; 
 assign fifoA_reset = reset; 
 assign fifoB_reset = reset; 
 assign AxB_reset = reset; 
 assign fifoP_reset = reset; 
 

 assign fifoA_push  = pushA; // User connections 
 assign fifoA_data_in = inA; 
 assign fifoA_pop  = activate; 
 

 assign fifoB_push  = pushB; 
 assign fifoB_data_in = inB; 
 assign fifoB_pop  = activate; 
 

 assign AxB_inA  = fifoA_data_out; 
 assign AxB_inB  = fifoB_data_out; 
 assign AxB_go   = activate; 
 

 assign fifoP_push  = AxB_done; 
 assign fifoP_data_in = AxB_outP; 
 assign fifoP_pop  = popP; 
 

 assign activate  = ~fifoA_empty & ~fifoB_empty & ~fifoP_full; 
 

 assign outP  = fifoP_data_out; 
 assign busy  = fifoA_full | fifoB_full; 
 assign ready  = ~fifoP_empty; 
 

endmodule /// top_level 



VI. PARALLEL THREADS ON ASM++ DIAGRAMS 

Operations at any state are (conditionally) executed in 
parallel.  However, real life circuits usually need two or more 
state machines also running in parallel [13], with dependent or 
independent state sequences.  ASM++ diagrams introduce that 
feature, as shown in fig. 6.  This example uses VHDL to 
describe a simplified version of a dual-clock FIFO, with no 
flags, and also VHDL is used for the generated code. 

 

 
 

Fig. 6.  A two threaded design with two clock signals. 
 
The VHDL code that implements the functionality described 

on fig. 6 is shown following. 
 

library  IEEE; 
use      IEEE.std_logic_1164.all; 
 

entity dual_clock_fifo is 
   generic ( 
      depth : integer := 4; -- 2^4 = 16 levels 
      width : integer := 8 -- 8-bit data 
   ); 
   port ( 
      clk_1, reset_1, push : in  std_logic; 
      data_in    : in  std_logic_vector (width–1 downto 0); 
      clk_2, reset_2, pop : in  std_logic; 
      data_out    : out std_logic_vector (width–1 downto 0) 
   ); 
end dual_clock_fifo; 

 
 
 
 

architecture RTL of dual_clock_fifo is 
 

   type  fifo_type is array (0 to 2**depth–1) 
       of std_logic_vector (width–1 downto 0); 
   signal fifo    : fifo_type; 
   signal write_pointer : integer range 0 to 2**depth–1; 
   signal read_pointer : integer range 0 to 2**depth–1; 
 

begin 
 

   process (clk_1, reset_1)   -- Write pointer control 
   begin 
      if (reset_1 = '1') then 
         write_pointer <= 0; 
      elsif rising_edge(clk_1) then 
         if (push = '1') then 
            write_pointer <= write_pointer + 1; 
         end if; 
      end if; 
   end process; 
 

   process (clk_1)     -- Writing of the FIFO 
   begin 
      if rising_edge(clk_1) then 
         if (push = '1') then 
            fifo(write_pointer) <= data_in; 
         end if; 
      end if; 
   end process; 
 

   process (clk_2, reset_2)   -- Read pointer control 
   begin 
      if (reset_2 = '1') then 
         read_pointer <= 0; 
      elsif rising_edge(clk_2) then 
         if (pop = '1') then 
            read_pointer <= read_pointer + 1; 
         end if; 
      end if; 
   end process; 
 

   data_out <= fifo(read_pointer); -- Asynchronous FIFO output 
 

end RTL; --- dual_clock_fifo 
 

VII. CONCLUSIONS 

This article has presented a powerful graphical method for 
electronic design at register transfer level.  It is based on 
standard ASM diagrams and most used structures of modern 
hardware description languages when implementing FPGA 
designs, improving their possibilities. 

The resulting graphical language is easy to learn and it 
allows a quick circuit behavior understanding, thus it is a 
suitable representation for design supervision and 
documentation.  It also has demonstrated that it is an excellent 
medium for teaching electronics, as a means of describing the 
circuit functionality before schematic capture or HDL 
handwriting. 

However, this is an ongoing methodology and new boxes 
with advanced functionality will be added in a near future.  An 
ASM++ compiler for Verilog and VHDL is under active 
development. 
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