
ASM++ diagrams used on teaching electronic design

S. de Pablo, S. Cáceres, J.A. Cebrián
Department of Electronics Technology

University of Valladolid, Valladolid, Spain.
{sanpab,sancac,jesceb}@eis.uva.es

M. Berrocal
eZono AG

Jena, Germany.
manuel@ezono.com

F. Sanz
European University

“Miguel de Cervantes”, Valladolid, Spain.
fsanz@uemc.es

Abstract– Algorithmic State Machines are a 40-year old tool
for the design of digital circuits. They are a good alternative to
Finite State Machines, where only states can be properly
described, but all operations must be annotated as lateral
comments. This paper shows the inner relationship between ASM
diagrams and modern languages used to describe hardware and it
proposes several modifications to the standard methodology to
allow automated tools to produce Verilog or VHDL code from
these diagrams. The new notation is more complete and
consistent and thus more convenient for CAD tools.

I. INTRODUCTION

The Algorithmic State Machine (ASM) method for
specifying digital designs, in an abstract behavioral form, was
originally documented by Clare [1] who worked at the
Electronics Research Laboratory of Hewlett Packard Labs,
based on previous developments made by Osborne at the
University of California at Berkeley [2]. Since then it has been
widely applied to assist designers in expressing abstract
algorithms and to support their conversion into hardware [3].
Many texts on digital logic design cover the ASM method in
conjunction with other methods for specifying Finite State
Machines (FSM), namely state tables and state diagrams [4].
Whereas most designers simply use them as a means to specify
the control of digital systems using complex FSM models [5],
[6], [7], [8], few texts actually use them to design whole
systems, except [9] and [10], that actually increment their
possibilities with higher level features.

State diagrams do not describe properly the actions that must
be executed as the control unit evolves through different states.
Meanwhile, ASM are a good alternative because they prevent
inconsistent diagram specifications and they are easier to read
and maintain. However, most authors consider them
impractical for large algorithms and hard to manage because of
their graphical interface [11], so modern hardware description
languages (HDL) are usually preferred to design at the register
transfer level (RTL).

Our engineering students at the University learn basic
electronic design using schematic capture tools and later on
they increment their skills on more complex RTL designs
using VHDL and Verilog. We have seen that FSM are useful
to give the students an overall view of a design, but they are
limited for detailed descriptions. Additionally, we have found
that ASM diagrams are useful during the concept capturing of
a digital development [5], because it is easy to materialize
ideas using them. During the detailed design specification,

when the order between different tasks becomes complex or
confuse, these diagrams help clarifying the ordering and
interactions between tasks.

However, we have found that current ASM notation cannot
properly describe real-life circuits, which usually have several
FSM running in parallel with complex interactions between
them. This paper presents a different notation, called “ASM++
diagrams”, aiming to improve ASM for more complex designs
and more suitable for automatic conversion into HDL code.

II. TRADITIONAL ASM DIAGRAMS

Traditional ASM diagrams use three types of boxes: the
“state boxes” –with rectangular shape– define the beginning of
each clock cycle and may include unconditional operations that
must be executed during or at the end of that cycle; “decision
boxes” –diamond ones– are used to test inputs or internal
values to determine the execution flow; and finally
“conditional output boxes” –oval ones– indicate those
operations that are executed only when previous conditions are
valid. An “ASM block” includes all operations and decisions
that are or can be performed simultaneously during each
execution cycle.

These ideas are illustrated in fig. 1, where a 12x12 unsigned
multiplier has been implemented through additions and shifts
using two states: during ‘Idle’ state this circuit waits for two
new operands given at ‘inA’ and ‘inB’ inputs when the ‘go’
signal is asserted to one; the second state, named ‘Loop’,
executes twelve additions and shifts in twelve clock cycles to
compute the desired product. At the end, a ‘done’ signal
validates the result given at the output ‘outP’. This circuit is
asynchronously initialized using an active high signal called
‘reset’ and then it is synchronized with a ‘clk’ signal not
included in this diagram.

Fig. 1. An example of traditional ASM.

The advantages of this representation over FSM are evident:
not only the evolution between states has been described, but
also the operations in and between states have been included;
additionally, conditions can be built up incrementally and later
combined into a single boolean condition [5]. However, they
have several properties that may be seen as disadvantages:

- They use the same box –with rectangular shape– for new
states and unconditional operations executed at those states.
Because of this property, ASM diagrams are compact, but they
are also more rigid and difficult to read.

- Sometimes it is difficult to differentiate the frontier
between different states. The complexity of some states
requires the use of dashed boxes (named ASM blocks) or even
different colors for different states.

- Due to the double meaning of rectangular boxes,
conditional operations must be represented using a different
shape, the oval boxes. But, actually, all operations are
conditional, because all of them are state dependent.

- Additionally, designers must use lateral annotations for
state names, for reset signals or even for links between
different parts of a design (see fig. 1).

- Finally, the width of signals and ports cannot be specified
when using the current notation.

The new notation proposed in this paper tries to solve all
these problems.

III. BASIC FEATURES OF ASM++ DIAGRAMS

The first and main change introduced by this new notation,
see fig. 2, is the use of a specific box for states –we propose
oval boxes, very similar to those circles used in bubble
diagrams– so now all operations may share the same
rectangular box. Diamonds are kept for decision boxes
because they are commonly recognized and accepted.

As shown in fig. 2, the resulting ASM++ diagram is less
compact, but more clear and flexible. Former ASM blocks
become useless because limits between states are clearly
defined by state boxes. All lateral annotations have
disappeared when using the new notation and designers have
more freedom to write operations using any arbitrary order: all
operations written from one state to the next one are executed
in parallel, but sometimes unconditional operations are better
written after conditional ones, as shown in ‘Loop’ state where
shifts are specified below the conditional addition. The use of
a specific box for states also simplifies the use of links between
different parts of a diagram. This feature helps in writing
complex designs that cannot fit in a single page.

More boxes are described in the following section, but an
important property of ASM++ can be pointed out now: all
boxes use standard HDL expressions, either Verilog (this case)
or VHDL (see fig. 6). This feature helps during the phase of
handwriting the final HDL code, but also it is decisive for the
ASM++ compiler that is in progress: it will generate HDL code
for simulators and synthesizers based on these diagrams.

Fig. 2. Basic boxes of the new ASM++ notation.

The following code (see also fig. 3 to complete the circuit

definition) shows how ASM++ diagrams can be easily
translated into HDL code. After a quick look the
correspondence between this diagram and its code is evident.

 parameter N = 12; // See fig. 3
 // …
 parameter Idle = 1’b0, Loop = 1’b1; // State codes
 always @ (posedge clk or posedge reset) // See also fig. 3
 begin
 if (reset) begin // Initialization sequence
 done <= 0; // Indicated by designer
 state <= Idle; // Going to the first state
 end else case (state)
 Idle: // First state
 begin
 done <= 0;
 if (go) begin // Waiting for ‘go’
 regA <= inA; // 12 bits assignment
 regB <= inB; // 24 bits assignment
 outP <= 0; // 24 bits assignment
 regJ <= 0; // 4 bits assignment
 state <= Loop; // Jump to next state
 end
 end
 Loop: // Second state
 begin
 if (regA[0])
 outP <= outP + regB; // Conditional operation
 regA <= regA >> 1; // Unconditional operations
 regB <= regB << 1; // The order ...
 regJ <= regJ + 1; // ... is decided by user
 if (regJ == N–1) begin
 done <= 1; // Indicate it finishes
 state <= Idle; // Conditional jump
 end
 end
 default: // Because of security reasons
 state <= Idle;
 endcase
 end // always block

IV. ADDITIONAL FEATURES OF ASM++ DIAGRAMS

Figure 2 describes the internal architecture of the proposed
module, but says nothing about its external interface, the width
of internal signals, or about synchronization. For an automated

tool that generates HDL code from this specification other
boxes are clearly required. Therefore, the new ASM++
notation adds more boxes to face these requirements, as shown
in fig. 3. Though, this paper modifies what was proposed at
[12] and [13].

From up to down, the first box of fig. 3 specifies the design
name (“multiplier”) and its optional parameters (or generics,
using the VHDL notation). Following, a port-like box allows a
detailed definition of the module interface: all inputs and
outputs can be described using the preferred HDL language.
Obviously, bigger designs may use more than one of these
interface boxes.

The third box has a card-like shape and is used to introduce
general HDL code and compiler directives: in this case, it is
used to declare and specify the size of all internal signals
(except the variable used for the resulting state machine).

Afterwards, a small box indicates that the synchronism of
this whole circuit will be managed using the ‘clk’ signal, and
finally the active high ‘reset’ signal will be used to
asynchronously initialize the ‘done’ output and the internal
state, starting at the first state named ‘Idle’ (see also fig. 2).

Fig. 3. Additional ASM++ boxes required to generate HDL code.

Using these new boxes, designers are now capable of

completely describe a module and generate the subsequent
HDL code for simulation and synthesis. However, looking
with greater attention to the signals of these diagrams, we
found that all of them exhibit a synchronous behavior: all
operations included in rectangular boxes are registered at the
end of each clock cycle. To improve the designer possibilities,
a new box for asynchronous assertions is also provided: they
have bent sides, as shown on fig. 4, and describe operations
that are performed during the present clock cycle.

Furthermore, a new box to describe default values has been
included: when synchronous signals are not used in one or
more states, the default behavior of those signals must be to
keep constant their last value, and that is the way all VHDL
and Verilog compilers work. But what happens when an

asynchronous signal is not used in one or more states? The
proposed value for those situations is “don’t care” to minimize
the generated combinatorial logic (see for example the HDL
code for 'data_out' on fig. 4, it actually does not depend on the
value of 'pop'). A new box has been included to modify these
default behaviors, for synchronous and asynchronous signals;
otherwise, designers would be required to write their
specifications once and again.

Fig. 4. An ASM++ example with asynchronous assertions.

The full Verilog code for the diagram of fig. 4 is shown

following. It should be noted that asynchronous assertions
ought to be written out of the ‘always’ (or ‘process’) block,
because they are not sensible to ‘clk’ edges or to ‘reset’ signal.

module small_fifo (clk, reset,
 push, pop, data_in, data_out, empty, full);

 parameter depth = 4; // It means 2^4 = 16 levels
 parameter width = 8; // 8-bit data width

 input clk, reset;
 input push, pop;
 input [width–1:0] data_in;
 output [width–1:0] data_out;
 output empty, full;

 reg [width–1:0] fifo [0:2**depth–1];
 reg [depth–1:0] write_pointer;
 reg [depth–1:0] read_pointer;
 reg last;

 always @ (posedge clk or posedge reset)
 begin
 if (reset) begin
 write_pointer <= 0; // Initialize pointers
 read_pointer <= 0;
 last <= 0;
 end

 else begin
 if (push) write_pointer <= write_pointer + 1;
 if (pop) read_pointer <= read_pointer + 1;

 if (push & ~pop) last <= 1;
 else if (pop & ~push) last <= 0;
 end
 end

 always @ (posedge clk)
 begin
 if (push) fifo[write_pointer] <= data_in;
 end

 assign data_out = fifo[read_pointer];

 assign empty = (read_pointer == write_pointer) & (last == 0) ? 1 : 0;
 assign full = (read_pointer == write_pointer) & (last == 1) ? 1 : 0;

endmodule /// small_fifo

The main reason for differentiating synchronous assignments

–codified into an ‘always’ block– from asynchronous
assertions –codified out of it, is that when code is handwritten
[14], [15], designer must look for all assertions after the main
block is written down. In order to understand the behavior of
the circuit, a different shape also helps.

V. HIERARCHICAL DESIGN USING ASM++ DIAGRAMS

A top level example with a hierarchical design is shown in
fig. 5. It includes all previous modules to build a 12x12
multiplier with two input FIFOs and an output FIFO to
maximize its throughput. As can be seen, when a module is
instantiated in an ASM++ diagram, the proposal is that a full
set of signals (with the name of the instantiated module, a dot,
and the name of each module port) are automatically available
to easy its connections with other modules. The result is clear,
as can be seen below, and designers write only what they need.

Fig. 5. A hierarchical design using ASM++ diagrams.

The Verilog code for the diagram of fig. 5 is shown at the

right column. The relationship between diagrams and HDL
code becomes evident again. It is also remarkable the amount
of code saved when using ASM++ diagrams, because most
redundant lines required by Verilog and VHDL are avoided.

module top_level (clk, reset,
 pushA, pushB, inA, inB, busy,
 popP, outP, ready);

 parameter depth = 4; // 16 levels at each FIFO
 parameter width = 12; // 12-bit unsigned integer

 input clk, reset;

 input pushA, pushB;
 input [width–1:0] inA, inB;
 output busy;

 input popP;
 output [2*width–1:0] outP;
 output ready;

 wire activate; // Internal signal

 wire fifoA_clk, fifoA_reset;
 wire [width–1:0] fifoA_data_in, fifoA_data_out;
 wire fifoA_push, fifoA_pop, fifoA_empty, fifoA_full;
 small_fifo # (depth <= depth, width <= width) fifoA (
 .clk(fifoA_clk), .reset(fifoA_reset),
 .push(fifoA_push), .pop(fifoA_pop), .data_in(fifoA_data_in),
 .data_out(fifoA_data_out), .empty(fifoA_empty), .full(fifoA_full));

 wire fifoB_clk, fifoB_reset;
 wire [width–1:0] fifoB_data_in, fifoB_data_out;
 wire fifoB_push, fifoB_pop, fifoB_empty, fifoB_full;
 small_fifo # (depth <= depth, width <= width) fifoB (
 .clk(fifoB_clk), .reset(fifoB_reset),
 .push(fifoB_push), .pop(fifoB_pop), .data_in(fifoB_data_in),
 .data_out(fifoB_data_out), .empty(fifoB_empty), .full(fifoB_full));

 wire AxB_clk, AxB_reset, AxB_go, AxB_done;
 wire [width–1:0] AxB_inA, AxB_inB;
 wire [2*width–1:0] AxB_outP;
 multiplier # (width) AxB (
 .clk(AxB_clk), .reset(AxB_reset),
 .inA(AxB_inA), .inB(AxB_inB), .go(AxB_go),
 .outP(AxB_outP), .done(AxB_done));

 wire fifoP_clk, fifoP_reset;
 wire [2*width–1:0] fifoP_data_in, fifoP_data_out;
 wire fifoP_push, fifoP_pop, fifoP_empty, fifoP_full;
 small_fifo # (depth <= depth, width <= 2 * width) fifoP (
 .clk(fifoP_clk), .reset(fifoP_reset),
 .push(fifoP_push), .pop(fifoP_pop), .data_in(fifoP_data_in),
 .data_out(fifoP_data_out), .empty(fifoP_empty), .full(fifoP_full));

 assign fifoA_clk = clk; // Default connections
 assign fifoB_clk = clk;
 assign AxB_clk = clk;
 assign fifoP_clk = clk;
 assign fifoA_reset = reset;
 assign fifoB_reset = reset;
 assign AxB_reset = reset;
 assign fifoP_reset = reset;

 assign fifoA_push = pushA; // User connections
 assign fifoA_data_in = inA;
 assign fifoA_pop = activate;

 assign fifoB_push = pushB;
 assign fifoB_data_in = inB;
 assign fifoB_pop = activate;

 assign AxB_inA = fifoA_data_out;
 assign AxB_inB = fifoB_data_out;
 assign AxB_go = activate;

 assign fifoP_push = AxB_done;
 assign fifoP_data_in = AxB_outP;
 assign fifoP_pop = popP;

 assign activate = ~fifoA_empty & ~fifoB_empty & ~fifoP_full;

 assign outP = fifoP_data_out;
 assign busy = fifoA_full | fifoB_full;
 assign ready = ~fifoP_empty;

endmodule /// top_level

VI. PARALLEL THREADS ON ASM++ DIAGRAMS

Operations at any state are (conditionally) executed in
parallel. However, real life circuits usually need two or more
state machines also running in parallel [13], with dependent or
independent state sequences. ASM++ diagrams introduce that
feature, as shown in fig. 6. This example uses VHDL to
describe a simplified version of a dual-clock FIFO, with no
flags, and also VHDL is used for the generated code.

Fig. 6. A two threaded design with two clock signals.

The VHDL code that implements the functionality described

on fig. 6 is shown following.

library IEEE;
use IEEE.std_logic_1164.all;

entity dual_clock_fifo is
 generic (
 depth : integer := 4; -- 2^4 = 16 levels
 width : integer := 8 -- 8-bit data
);
 port (
 clk_1, reset_1, push : in std_logic;
 data_in : in std_logic_vector (width–1 downto 0);
 clk_2, reset_2, pop : in std_logic;
 data_out : out std_logic_vector (width–1 downto 0)
);
end dual_clock_fifo;

architecture RTL of dual_clock_fifo is

 type fifo_type is array (0 to 2**depth–1)
 of std_logic_vector (width–1 downto 0);
 signal fifo : fifo_type;
 signal write_pointer : integer range 0 to 2**depth–1;
 signal read_pointer : integer range 0 to 2**depth–1;

begin

 process (clk_1, reset_1) -- Write pointer control
 begin
 if (reset_1 = '1') then
 write_pointer <= 0;
 elsif rising_edge(clk_1) then
 if (push = '1') then
 write_pointer <= write_pointer + 1;
 end if;
 end if;
 end process;

 process (clk_1) -- Writing of the FIFO
 begin
 if rising_edge(clk_1) then
 if (push = '1') then
 fifo(write_pointer) <= data_in;
 end if;
 end if;
 end process;

 process (clk_2, reset_2) -- Read pointer control
 begin
 if (reset_2 = '1') then
 read_pointer <= 0;
 elsif rising_edge(clk_2) then
 if (pop = '1') then
 read_pointer <= read_pointer + 1;
 end if;
 end if;
 end process;

 data_out <= fifo(read_pointer); -- Asynchronous FIFO output

end RTL; --- dual_clock_fifo

VII. CONCLUSIONS

This article has presented a powerful graphical method for
electronic design at register transfer level. It is based on
standard ASM diagrams and most used structures of modern
hardware description languages when implementing FPGA
designs, improving their possibilities.

The resulting graphical language is easy to learn and it
allows a quick circuit behavior understanding, thus it is a
suitable representation for design supervision and
documentation. It also has demonstrated that it is an excellent
medium for teaching electronics, as a means of describing the
circuit functionality before schematic capture or HDL
handwriting.

However, this is an ongoing methodology and new boxes
with advanced functionality will be added in a near future. An
ASM++ compiler for Verilog and VHDL is under active
development.

ACKNOWLEDGMENTS

The authors would like to acknowledge the financial support
for these developments of eZono AG, Jena, Germany.

REFERENCES
[1] C.R. Clare, Designing Logic Using State Machines, McGraw-Hill, 1973.

Referenced by [2].
[2] S. Leibson, “The NMOS II Hybrid Microprocessor: Fusing silicon,

ceramic, and aluminum with rubber baby buggy bumpers”, online at
http://www.hp9825.com/html/hybrid_microprocessor.html, reviewed on
March 2007.

[3] V.R.L. Shen and F. Lai, “Requirements Specification and Analysis of
Digital Systems Using Fuzzy and Marked Petri Nets”, IEEE Transactions
on Systems, Man and Cybernetics, Vol. 32, No. 1, pp. 149-159, January
2002.

[4] D.D. Gajski, Principles of Digital Design, Prentice Hall, Upper Saddle
River, NJ, 1997.

[5] A.T. Bahill et al., “The design-methods comparison project”, IEEE
Transactions on Systems, Man and Cybernetics, Vol. 28, No. 1, pp. 80-
103, February 1998.

[6] S. Baranov, “Synthesis of control units for mobile robots”, Second
EUROMICRO workshop on Advanced Mobile Robots, pp. 80-86, 1997.

[7] W.F. Lee et al., “An ASM-based ASIC for automobile accelerometer
applications”, First IEEE Asia Pacific Conference on ASICs, pp. 127-
130, 1999.

[8] M.S. Nixon, “On a Programmable Approach to Introducing Digital
Design”, IEEE Trans. on Education, Vol. 40, No. 3, pp. 195-206, August
1997.

[9] J.P. David and E. Bergeron, “A Step towards Intelligent Translation from

High-Level Design to RTL”, Proceedings of 4th IEEE International
Workshop on System-on-Chip for Real-Time Applications, pp. 183-188,
2004.

[10] E. Ogoubi and J.P. David, “Automatic synthesis from high level ASM to
VHDL: a case study”, 2nd Annual IEEE Northeast Workshop on Circuits
and Systems, pp. 81-84, 2004.

[11] E. Bergeron, X. Saint-Mleux, M. Feeley, and J.P. David, “High Level
Synthesis for Data-Driven Applications”, 16th IEEE International
Workshop on Rapid System Prototyping, pp. 54-60, 2005.

[12] S. de Pablo, S. Cáceres, J.A. Cebrián, and M. Berrocal, “A proposal for
ASM++ diagrams”, 10th IEEE Workshop on Design and Diagnostics of
Electronic Circuits and Systems, Krakow, Poland, 2007.

[13] S. de Pablo, S. Cáceres, J.A. Cebrián, and M. Berrocal, “Application of
ASM++ methodology on the design of a DSP processor”, 4th
FPGAworld Conference, Stockholm, Sweden, 2007.

[14] M. Chang, “Teaching Top-down Design Using VHDL and CPLD”, IEEE
FIE’96 Proceedings, pp. 514-517, 1996.

[15] T.A. Giuma, D. Welch, and K. MacDonald, “Computer-Aided-Design
Platform For Sequential Systems”, IEEE Southeastcon’97 Proceedings,
pp. 79-81, 1997.

