
ASM++ charts: an intuitive circuit representation
ranging from low level RTL to SoC design

S. de Pablo, L.C. Herrero, F. Martínez
University of Valladolid

Valladolid (Spain)
sanpab@eis.uva.es

M. Berrocal
eZono AG

Jena (Germany)
manuel@ezono.com

Abstract

This article presents a methodology to describe
digital circuits from register transfer level to system
level. When designing systems it encapsulates the
functionality of several modules and also encapsulates
the connections between those modules. To achieve these
results, the possibilities of Algorithmic State Machines
(ASM charts) have been extended to develop a compiler.
Using this approach, a System-on-a-Chip (SoC) design
becomes a set of linked boxes where several special
boxes encapsulate the connections between modules. The
compiler processes all required boxes and files, and then
generates the corresponding HDL code, valid for
simulation and synthesis. A small SoC example is shown.

1. Introduction

System-on-a-Chip (SoC) designs integrate processor
cores, memories and custom logic joined into complete
systems. The increased complexity requires more effort
and more efficient tools, but also an accurate knowledge
on how to connect new computational modules to new
peripheral devices using even new communication
protocols and standards.

A hierarchical approach may encapsulate on black
boxes the functionality of several modules. This
technique effectively reduces the number of components,
but system integration becomes more and more difficult
as new components are added every day.

Thus, the key to a short design time, enabling
“product on demand”, is the use of a set of predesigned
components which can be easily integrated through a set
of also predesigned connections, in order to build a
product.

Because of this reason, Xilinx and Altera have
proposed their high end tools named Embedded
Development Kit [1] and SoPC Builder [2], respectively,
that allow the automatic generation of systems. Using
these tools, designers may build complete SoC designs
based on their processors and peripheral modules in few
hours. At a lower scale, similar results may be found on
the Hardware Highway (HwHw) web tool [3].

On the language side a parallel effort has been
observed. In particular, SystemVerilog [4] now include
an ‘interface’ element that allow designers to join several
inputs and outputs together in one named description, so
textual designs may become easier to read and
understand. At a different scale, pursuing a higher level
of abstraction, the promising SpecC top-down
methodology [5] firstly describes computations and
communications at an abstract and untimed level, and
then descends to an accurate and precise level where
connections and delays are fully described.

The aim of this paper is to contribute to these efforts
from a bottom-up point of view, mostly adequate for
academic purposes. First of all, we present several
extensions to the Algorithmic State Machine (ASM)
methodology, what we have called “ASM++ charts”,
allowing the automatic generation of VHDL or Verilog
code from this charts, using a recently developed
ASM++ compiler. Furthermore, these diagrams may
describe hierarchical designs and define, through special
boxes, how to connect different modules all together.

2. ASM++ charts

The Algorithmic State Machine (ASM) method for
specifying digital designs was originally documented on
1973 by C.R. Clare [6], who worked at the Electronics
Research Laboratory of Hewlett Packard Labs, based on
previous developments made by T. Osborne at the
University of California at Berkeley [6]. Since then it has
been widely applied to assist designers in expressing
algorithms and to support their conversion into hardware
[7-10]. Many texts on digital logic design cover the
ASM method in conjunction with other methods for
specifying Finite State Machines (FSM) [11-12].

A FSM is a valid representation of the behavior of a
digital circuit when the number of transitions and the
complexity of operations is low. The example of fig. 1
shows a FSM for a 12x12 unsigned multiplier that
computes ‘outP = inA * inB’ through twelve conditional
additions. It is fired by a signal named ‘go’, it signals the
answer using ‘done’, and indicates through ‘ready’ that
new operands are welcome.

Figure 1. An example of FSM for a multiplier.

However, on these situations traditional ASM charts
may be more accurate and consistent. As shown at fig. 2,
they use three different boxes to fully describe the
behavior of cycle driven RTL designs: a “state box” with
rectangular shape defines the beginning of each clock
cycle and may include unconditional operations that
must be executed during (marked with ‘=’) or at the end
(using the delay operator ‘←’) of that cycle; “decision
boxes” –diamond ones– are used to test inputs or internal
values to determine the execution flow; and finally
“conditional output boxes” –with oval shape– indicate
those operations that are executed during the same clock
cycle, but only when previous conditions are valid.
Additionally, an “ASM block” includes all operations
and decisions that are or can be executed simultaneously
during each clock cycle.

Figure 2. Traditional ASM chart for a multiplier.

The advantages of FSM for an overall description of a
module are evident, but the ASM representation allows
more complex designs through conditions that are
introduced incrementally and detailed operations located
where designer specifies.

However, ASM notation has several drawbacks:
– They use the same box, rectangular ones, for new

states and unconditional operations executed at
those states. Because of this property, ASM
diagrams are compact, but they are also more rigid
and difficult to read.

– Sometimes it is difficult to differentiate the frontier
between different states. The complexity of some
states requires the use of dashed boxes (named
ASM blocks) or even different colors for different
states.

– Due to the double meaning of rectangular boxes,
conditional operations must be represented using a
different shape, the oval boxes. But, actually, all
operations are conditional, because all of them are
state dependent.

– Additionally, designers must use lateral annotations
for state names, for reset signals or even for links
between different parts of a design (see fig. 2).

– Finally, the width of signals and ports cannot be
specified when using the current notation.

Proposed ASM++ notation [13-14] tries to solve all
these problems and extend far beyond the possibilities of
this methodology. The first and main change introduced
by this new notation, as seen at fig. 3, is the use of a
specific box for states –we propose oval boxes, very
similar to those circles used in bubble diagrams– thus
now all operations may share the same box, a rectangle
for synchronous assignments and a rectangle with bent
sides for asynchronous assertions. Diamonds are kept for
decision boxes because they are commonly recognized
and accepted.

Figure 3. ASM++ chart ready for compilation.

Figure 3 shows additional features of ASM++ charts,
included to allow their automatic compilation to generate
HDL code. In addition to an algorithmic part, a
declarative section may describe the design name, its
implementation parameters, the external interface, one or
more internal signals. The synchronization signal and its
reset sequence can be fully specified in a very intuitive
way too. A box for ‘defaults’ has been added to easily
describe the circuit behavior when any state leave any
signal free. Furthermore, all boxes use standard VHDL
or Verilog expressions, but never both of them; the
ASM++ compiler usually detects the HDL and then
generates valid HDL code using the same language.

3. Hierarchical design using ASM++ charts

As soon as a compiler generates the VHDL or Verilog
code related to an ASM++ chart, the advanced features
of modern HDL languages can be easily integrated on
them. The requirements for hierarchical design have
been included through the following elements:

– Each design begins with a ‘header’ box that
specifies the design name and, optionally, its
parameters or generics.

– Any design may use one or several pages on a MS
Visio 2007 document1, saved using its VDX format.
Each VDX document may include several designs
identified through their header boxes.

– Any design may instantiate other designs, giving
them an instance name. As soon as a lower level
module is instantiated, a full set of signals named
“instance_name.port_name” (see fig. 5) is created
to ease the connections with other elements. Later
on, any ‘dot’ will be replaced by an ‘underline’
because of HDL compatibility issues.

– When the description of an instantiated module is
located on another file, a ‘RequireFile’ box must be
used before the header box to allow a joint
compilation. However, the ASM++ compiler
identifies any previously compiled design to avoid
useless efforts and invalid duplications.

– VHDL users may include libraries or packages
using their ‘library’ and ‘use’ sentences, but also
before any header box.

– Nowadays, compiler does not support reading
external HDL files, in order to instantiate hand
written modules. A prototype of them, as shown at
fig. 4, can be used instead.

Using these features, an example with a slightly
improved multiplier can be easily designed. First of all, a
prototype of a small FIFO memory is declared, as shown
at fig. 4, thus compiler may know how to instantiate and
connect this module, described elsewhere on a Verilog
file. Then three FIFO memories are instantiated to
handle the input and output data flows, as shown at fig.
5, so several processors may feed and retrieve data from
this processing element.

Figure 4. A prototype of an external design.

1 Actually, designers may also use MS Visio 2003 or ConceptDraw.

However, the only supported file format is VDX.

Figure 5. An example of hierarchical design.

The ASM++ chart of fig. 5 can be compared with its
arranged compilation result, shown below. The
advantages of this methodology on flexibility, clarity and
time saving are evident. Not always a text based tool is
faster and more productive than a graphical tool.

module hierarchical_design (clk, reset, inA, inB, outP,
 readyA, readyB, readyP, pushA, pushB, popP);

 parameter width = 16; // 16x16 => 32
 parameter depth = 6; // 64-level buffers

 input clk, reset;

 output readyA;
 input pushA;
 input [width-1:0] inA;

 output readyB;
 input pushB;
 input [width-1:0] inB;

 output readyP;
 input popP;
 output [2*width-1:0] outP;

 wire activate;

 wire fifoA_clk, fifoA_reset;
 wire [width-1:0] fifoA_dataIn, fifoA_dataOut;
 wire fifoA_push, fifoA_pop;
 wire fifoA_empty, fifoA_full;
 fifo # (
 .width(width), .depth (depth)
) fifoA (
 .clk (fifoA_clk), .reset (fifoA_reset),
 .data_in (fifoA_dataIn), .data_out (fifoA_dataOut),
 .push (fifoA_push), .pop (fifoA_pop),
 .empty (fifoA_empty), .full (fifoA_full)
);

 wire fifoB_clk, fifoB_reset;
 wire [width-1:0] fifoB_dataIn, fifoB_dataOut;
 wire fifoB_push, fifoB_pop;
 wire fifoB_empty, fifoB_full;
 fifo # (
 .width(width), .depth (depth)
) fifoB (
 .clk (fifoB_clk), .reset (fifoB_reset),
 .data_in (fifoB_dataIn), .data_out (fifoB_dataOut),
 .push (fifoB_push), .pop (fifoB_pop),
 .empty (fifoB_empty), .full (fifoB_full)
);

 wire AxB_clk, AxB_reset;
 wire AxB_go, AxB_ready, AxB_done;
 wire [width-1:0] AxB_inA, AxB_inB;
 wire [2*width-1:0] AxB_outP;
 multiplier # (
 .N(width)
) AxB (
 .clk (AxB_clk), .reset (AxB_reset),
 .go (AxB_go), .ready(AxB_ready), .done(AxB_done),
 .inA(AxB_inA), .inB (AxB_inB), .outP(AxB_outP)
);

 wire fifoP_clk, fifoP_reset;
 wire [2*width-1:0] fifoP_dataIn, fifoP_dataOut;
 wire fifoP_push, fifoP_pop;
 wire fifoP_empty, fifoP_full;
 fifo # (
 .width(2 * width), .depth (depth)
) fifoP (
 .clk (fifoP_clk), .reset (fifoP_reset),
 .data_in (fifoP_dataIn), .data_out (fifoP_dataOut),
 .push (fifoP_push), .pop (fifoP_pop),
 .empty (fifoP_empty), .full (fifoP_full)
);

 assign fifoA_clk = clk; // Default connections
 assign fifoB_clk = clk;
 assign AxB_clk = clk;
 assign fifoP_clk = clk;
 assign fifoA_reset = reset;
 assign fifoB_reset = reset;
 assign AxB_reset = reset;
 assign fifoP_reset = reset;

 assign fifoA_push = pushA; // User connections
 assign fifoA_dataIn = inA;
 assign fifoA_pop = activate;

 assign fifoB_push = pushB;
 assign fifoB_dataIn = inB;
 assign fifoB_pop = activate;

 assign AxB_inA = fifoA_dataOut;
 assign AxB_inB = fifoB_dataOut;
 assign AxB_go = activate;

 assign fifoP_push = AxB_done;
 assign fifoP_dataIn = AxB_outP;
 assign fifoP_pop = popP;

 assign activate = AxB.ready & ~fifoA_empty
 & ~fifoB_empty & ~fifoP_full;

 assign outP = fifoP_dataOut;
 assign readyA = ~fifoA_full;
 assign readyB = ~fifoB_full;
 assign readyP = ~fifoP_empty;

endmodule /// hierarchical_design

4. Encapsulating connections using pipes

Following this bottom-up methodology, the next step
is using ASM++ charts to design full systems. As stated
above, a chart can be used to instantiate several modules
and connect them, with full, simple and easy access to all
port signals.

However, system designers need to know how their
available IP modules can or must be connected, in order
to build a system. Probably, they need to read thoroughly
several data sheets and try different combinations, to
finally match their requirements. Nonetheless, when they
become experts on those modules, newer and better IP

modules are developed, so system designers must start
again and again.

This paper presents an alternative to this situation,
called “Easy-Reuse”. During the following explanations,
please, refer to figures 6 to 9.

– First of all, a fully new concept must be introduced:
an ASM++ chart may describe an entity/module
that will be instantiated, like ‘multiplier’ at fig. 3,
but additionally it may be used for a description
that will be executed (see figs. 8 and 9). The former
will just instantiate a reference to an outer
description, meanwhile the later will generate one
or more sentences inside the modules that call
them. To differentiate those modules that will be
executed, header boxes enclose one or more
module names using ‘<’ and ‘>’ symbols. Later on,
these descriptions will be processed each time an
instance or a ‘pipe’ (described below) calls them.

– Furthermore, the ASM++ compiler has been
enhanced with PHP-like variables [15]. They are
immediately evaluated during compilation, but they
are available only at compilation time, so no circuit
structures will be directly inferred from them. Their
names are preceded by a dollar sign (‘$’), they may
be assigned with no previous declaration and store
integer values, strings or lists of freely indexed
variables.

– In order to differentiate several connections that
may use the same descriptor, variables are used
instead of parameters or generics. The
corresponding field at a header box, when using it
to start a connection description, is used to define
default values for several variables (see fig. 8);
these specifications would be changed by pipes on
each instantiation (see fig. 6).

– Usual ASM boxes are connected in a sequence
using arrows with sense; a new box called “pipe”
can be placed out of the sequence and connect two
instances through single lines, with no arrows.

– When compiler finishes the processing of the main
sequence, it searches all pipes, looks for their
linked instances, and executes the ASM charts
related to those connections. Before each operation,
it defines two automatic variables to identify the
connecting instances. As said above, the pipe itself
may define additional variables to personalize and
differentiate each connection.

– As soon as several pipes may describe connections
to the same signal, a resolution function must be
defined to handle their conflicts. A tristate function
would be used, but HDL compilers use to refuse
such connections if they suspect contentions;
furthermore, modern FPGAs do not implement
such resources any more because of their high
consumption, thus these descriptions are actually
replaced by gate-safe logic. Subsequently, a wired-
OR, easier to understand than a wired-AND, has

been implemented when several sources define
different values from different pipe instantiations
or, in general, from different design threads.

– The last element required by ASM++ charts to
manage automatic connections is conditional
compilation. A diamond-like box, with double lines
at each side, is used to tell the ASM++ compiler to
follow one path and fully ignore the other one.
Thus, different connections are created when, for
example, a FIFO memory is accessed from a
processor to write data, to read data or both.

Using these ideas, a SoC design may now encapsulate
not only the functionality of several components, but
also their connections.

Figure 6 describes a small SoC that implements a
Harvard-like DSP processor (see [13]) connected to a
program memory, a 32-level FIFO and a register. First of
all, two C-like compiler directives are used to specify the
HDL language and a definition used later; a VDX file
that describes the DSP processor is also included before
giving a name to the SoC design. Then, all required
modules are instantiated and connected using pipes.

Figure 6. A small SoC design using pipes.

A small program memory has been designed for
testing purposes, as shown at fig. 7: the upper chart
describes a ROM memory with a short program that
emulates the behavior of a Xilinx Block RAM, and the
lower chart describes how this synchronous memory
must be connected to the DSP. This figure illustrates the
use of automatic variables (‘$ProgMem’ and
‘$DSPuva18’, whose values will be “mem_01” and
“dsp_01”, respectively) and the difference between
modules that can be instantiated or executed.

Figure 7. Charts may describe connections.

The pipe at figure 6 with text “RW250” describes the
connection of a FIFO memory (see fig. 4) to a
DSPuva18 processor [13], thus it executes the ASM++
chart shown at fig. 8. When executing this pipe, a ‘0’
value is firstly assigned to variables ‘$port’,
‘$write_side’ and ‘$read_side’, as stated by the header
box; then these values are changed as specified by the
pipe box (see the defined value of ‘RW250’); finally, the
chart of figure 8 generates the HDL code that fully
describes how “fifo_01” device is connected to
“dsp_01” processor for reading and writing using port
‘250’ for data and port ‘251’ for control (getting the state
through a read and forcing a reset through a write).

Figure 8. An ASM++ chart that describes how a
FIFO must be connected to a DSP processor.

Two final ASM++ charts will be described at figure
9, but other required charts have not been included for
shortness. The chart at left specifies how the instance
named ‘SoC_iface’ at figure 6 must be executed, not
instantiated, in order to generate two control inputs and
to connect them to all modules. The diagram at right
generates additional I/O signals and connects them to the
register controlled by the DSP through its port ‘0’.

Figure 9. Charts may describe I/O interface too.

Several sentences of the HDL code generated by the
ASM++ compiler when processing these diagrams are
displayed following, revealing that ASM++ charts are
fully capable of describing SoC designs using an
intuitive, easy to use and consistent representation.

// I/O interface described by ‘SoC_iface’ instance and pipe (see figure 9):
input clk, reset;
output [31:0] reg_01_LEDs;

// A connection described by “ <SoC_iface> <Register>” pipe:
assign reg_01_LEDs = reg_01_dataOut;

// Connecting dsp_01 to mem_01, its program memory (see figure 6):
assign mem_01_rst = dsp_01_progReset;
assign mem_01_addr = dsp_01_progAddress;
assign dsp_01_progData = mem_01_data;

// Connecting reg_01 to dsp_01 (at port ‘0’):
assign reg_01_we = dsp_01_portWrite & dsp_01_portAddress == 0);
assign reg_01_dataIn = dsp_01_dataOut;

// Connecting fifo_01 to dsp_01 (at ports ‘250’ and ‘251’):
always @ (posedge fifo_01_clk)
begin
 fifo_01_reset <= dsp_01_portWrite & (dsp_01_portAddress == 250 + 1);
end
assign fifo_01_dataIn = dsp_01_ dataOut;
assign fifo_01_push = dsp_01_portWrite & (dsp_01_portAddress == 250);
assign fifo_01_pop = dsp_01_portRead & (dsp_01_portAddress == 250);

// Connecting several sources to dsp_01 using a wired-OR:
assign asm_thread_1017_dsp_01_dataIn =
 (dsp_01_portRead & (dsp_01_portAddress == 0)) ? reg_01_dataOut : 0;
assign asm_thread_1021_dsp_01_dataIn =
 (fifo_01_pop) ? fifo_01_dataOut :
 (dsp_01_portRead & (dsp_01_portAddress == 250+1)) ?
 {fifo_01_full, fifo_01_almostFull, fifo_01_half, fifo_01_almostEmpty, fifo_01_empty} : 0;
assign dsp_01_dataIn =
 asm_thread_1017_dsp_01_dataIn | asm_thread_1021_dsp_01_dataIn;

5. Conclusions

This article has presented a powerful and intuitive
methodology for SoC design named Easy-Reuse. It is
based on a suitable extension of traditional Algorithmic
State Machines, named ASM++ charts, its compiler and
a key idea: charts may describe entities or modules, but
they also may describe connections between modules.
The ASM++ compiler developed to process these charts
in order to generate VHDL or Verilog code has been
enhanced further to understand a new box called pipe
that implements the required connections. The result is a
self-documented diagram that fully describes the system
for easy maintenance, supervision, simulation and
synthesis.

6. Acknowledgments

The authors would like to acknowledge the financial
support for these developments of eZono AG, Jena,
Germany, ISEND SA, Valladolid, Spain, and the
Spanish Government under grant CICYT ENE2007-
67417/ALT.

References

[1] Xilinx, “Platform Studio and the EDK”, on-line at http://
www.xilinx.com/ise/embedded_design_prod/platform_stu
dio.htm, last viewed on July 2008.

[2] Altera, “SoPC Builder”, on-line at http://www.altera.com
/products/software/products/sopc/sop-index.html, last
viewed on July 2008.

[3] epYme workgroup, “HwHw: The Hardware Highway
web-tool for fast prototyping in digital system design”,
on-line at http://www.epYme.uva.es/HwHw.php, 2007.

[4] SystemVerilog, “IEEE Std. 1800-2005: IEEE Standard
for SystemVerilog – Unified Hardware Design,
Specification, and Verification Language”, IEEE, 3 Park
Avenue, NY, 2005.

[5] R. Dömer, D.D. Gajski and A. Gerstlauer, “SpecC
Methodology for High-Level Modeling”, 9th
IEEE/DATC Electronic Design Processes Workshop,
2002.

[6] C.R. Clare, Designing Logic Systems Using State
Machines, McGraw-Hill, New York, 1973.

[7] D.W. Brown, “State-Machine Synthesizer – SMS”, Proc.
of 18th Design Automation Conference, pp. 301-305,
Nashville, Tennessee, USA, June 1981.

[8] J.P. David and E. Bergeron, “A Step towards Intelligent
Translation from High-Level Design to RTL”, Proc. of
4th IEEE International Workshop on System-on-Chip for
Real-Time Applications, pp. 183-188, Banff, Alberta,
Canada, July 2004.

[9] E. Ogoubi and J.P. David, “Automatic synthesis from
high level ASM to VHDL: a case study”, 2nd Annual
IEEE Northeast Workshop on Circuits and Systems
(NEWCAS 2004), pp. 81-84, June 2004.

[10] D. Ponta and G. Donzellini, “A Simulator to Train for
Finite State Machine Design”, Proc. of 26th Annual
Conference on Frontiers in Education Conference
(FIE'96), vol. 2, pp. 725-729, Salt Lake City, Utah, USA,
November 1996.

[11] D.D. Gajski, Principles of Digital Design, Prentice Hall,
Upper Saddle River, NJ, 1997.

[12] Roth, Fundamentals of Logic Design, 5th edition,
Thomson-Engineering, 2003.

[13] S. de Pablo, S. Cáceres, J.A. Cebrián and M. Berrocal,
“Application of ASM++ methodology on the design of a
DSP processor”, Proc. of 4th FPGAworld Conference,
pp. 13-19, Stockholm, Sweden, September 2007.

[14] S. de Pablo, S. Cáceres, J.A. Cebrián, M. Berrocal and F.
Sanz, “ASM++ diagrams used on teaching electronic
design”, International Joint Conferences on Computer,
Information, and Systems Sciences, and Engineering
(CISSE 2007), on-line conference, December 2007.

[15] The PHP Group, on-line at http://www.php.net, last
release has been PHP 5.2.6 at May 1st, 2008.

