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Abstract 

This article presents a methodology to describe 
digital circuits from register transfer level to system 
level. When designing systems it encapsulates the 
functionality of several modules and also encapsulates 
the connections between those modules. To achieve these 
results, the possibilities of Algorithmic State Machines 
(ASM charts) have been extended to develop a compiler. 
Using this approach, a System-on-a-Chip (SoC) design 
becomes a set of linked boxes where several special 
boxes encapsulate the connections between modules. The 
compiler processes all required boxes and files, and then 
generates the corresponding HDL code, valid for 
simulation and synthesis. A small SoC example is shown. 

 

1. Introduction 

System-on-a-Chip (SoC) designs integrate processor 
cores, memories and custom logic joined into complete 
systems. The increased complexity requires more effort 
and more efficient tools, but also an accurate knowledge 
on how to connect new computational modules to new 
peripheral devices using even new communication 
protocols and standards. 

A hierarchical approach may encapsulate on black 
boxes the functionality of several modules. This 
technique effectively reduces the number of components, 
but system integration becomes more and more difficult 
as new components are added every day. 

Thus, the key to a short design time, enabling 
“product on demand”, is the use of a set of predesigned 
components which can be easily integrated through a set 
of also predesigned connections, in order to build a 
product. 

Because of this reason, Xilinx and Altera have 
proposed their high end tools named Embedded 
Development Kit [1] and SoPC Builder [2], respectively, 
that allow the automatic generation of systems. Using 
these tools, designers may build complete SoC designs 
based on their processors and peripheral modules in few 
hours. At a lower scale, similar results may be found on 
the Hardware Highway (HwHw) web tool [3]. 

On the language side a parallel effort has been 
observed. In particular, SystemVerilog [4] now include 
an ‘interface’ element that allow designers to join several 
inputs and outputs together in one named description, so 
textual designs may become easier to read and 
understand. At a different scale, pursuing a higher level 
of abstraction, the promising SpecC top-down 
methodology [5] firstly describes computations and 
communications at an abstract and untimed level, and 
then descends to an accurate and precise level where 
connections and delays are fully described. 

The aim of this paper is to contribute to these efforts 
from a bottom-up point of view, mostly adequate for 
academic purposes. First of all, we present several 
extensions to the Algorithmic State Machine (ASM) 
methodology, what we have called “ASM++ charts”, 
allowing the automatic generation of VHDL or Verilog 
code from this charts, using a recently developed 
ASM++ compiler. Furthermore, these diagrams may 
describe hierarchical designs and define, through special 
boxes, how to connect different modules all together. 

 

2. ASM++ charts 

The Algorithmic State Machine (ASM) method for 
specifying digital designs was originally documented on 
1973 by C.R. Clare [6], who worked at the Electronics 
Research Laboratory of Hewlett Packard Labs, based on 
previous developments made by T. Osborne at the 
University of California at Berkeley [6]. Since then it has 
been widely applied to assist designers in expressing 
algorithms and to support their conversion into hardware 
[7-10]. Many texts on digital logic design cover the 
ASM method in conjunction with other methods for 
specifying Finite State Machines (FSM) [11-12]. 

A FSM is a valid representation of the behavior of a 
digital circuit when the number of transitions and the 
complexity of operations is low. The example of fig. 1 
shows a FSM for a 12x12 unsigned multiplier that 
computes ‘outP = inA * inB’ through twelve conditional 
additions. It is fired by a signal named ‘go’, it signals the 
answer using ‘done’, and indicates through ‘ready’ that 
new operands are welcome. 



 

Figure 1. An example of FSM for a multiplier. 

However, on these situations traditional ASM charts 
may be more accurate and consistent. As shown at fig. 2, 
they use three different boxes to fully describe the 
behavior of cycle driven RTL designs: a “state box” with 
rectangular shape defines the beginning of each clock 
cycle and may include unconditional operations that 
must be executed during (marked with ‘=’) or at the end 
(using the delay operator ‘←’) of that cycle; “decision 
boxes” –diamond ones– are used to test inputs or internal 
values to determine the execution flow; and finally 
“conditional output boxes” –with oval shape– indicate 
those operations that are executed during the same clock 
cycle, but only when previous conditions are valid. 
Additionally, an “ASM block” includes all operations 
and decisions that are or can be executed simultaneously 
during each clock cycle. 

 

 

Figure 2. Traditional ASM chart for a multiplier. 

The advantages of FSM for an overall description of a 
module are evident, but the ASM representation allows 
more complex designs through conditions that are 
introduced incrementally and detailed operations located 
where designer specifies. 

However, ASM notation has several drawbacks: 
– They use the same box, rectangular ones, for new 

states and unconditional operations executed at 
those states. Because of this property, ASM 
diagrams are compact, but they are also more rigid 
and difficult to read. 

– Sometimes it is difficult to differentiate the frontier 
between different states. The complexity of some 
states requires the use of dashed boxes (named 
ASM blocks) or even different colors for different 
states. 

– Due to the double meaning of rectangular boxes, 
conditional operations must be represented using a 
different shape, the oval boxes. But, actually, all 
operations are conditional, because all of them are 
state dependent. 

– Additionally, designers must use lateral annotations 
for state names, for reset signals or even for links 
between different parts of a design (see fig. 2). 

– Finally, the width of signals and ports cannot be 
specified when using the current notation. 

Proposed ASM++ notation [13-14] tries to solve all 
these problems and extend far beyond the possibilities of 
this methodology. The first and main change introduced 
by this new notation, as seen at fig. 3, is the use of a 
specific box for states –we propose oval boxes, very 
similar to those circles used in bubble diagrams– thus 
now all operations may share the same box, a rectangle 
for synchronous assignments and a rectangle with bent 
sides for asynchronous assertions. Diamonds are kept for 
decision boxes because they are commonly recognized 
and accepted. 

 

 

Figure 3. ASM++ chart ready for compilation. 

Figure 3 shows additional features of ASM++ charts, 
included to allow their automatic compilation to generate 
HDL code. In addition to an algorithmic part, a 
declarative section may describe the design name, its 
implementation parameters, the external interface, one or 
more internal signals. The synchronization signal and its 
reset sequence can be fully specified in a very intuitive 
way too. A box for ‘defaults’ has been added to easily 
describe the circuit behavior when any state leave any 
signal free. Furthermore, all boxes use standard VHDL 
or Verilog expressions, but never both of them; the 
ASM++ compiler usually detects the HDL and then 
generates valid HDL code using the same language. 



3. Hierarchical design using ASM++ charts 

As soon as a compiler generates the VHDL or Verilog 
code related to an ASM++ chart, the advanced features 
of modern HDL languages can be easily integrated on 
them. The requirements for hierarchical design have 
been included through the following elements: 

– Each design begins with a ‘header’ box that 
specifies the design name and, optionally, its 
parameters or generics. 

– Any design may use one or several pages on a MS 
Visio 2007 document1, saved using its VDX format. 
Each VDX document may include several designs 
identified through their header boxes. 

– Any design may instantiate other designs, giving 
them an instance name. As soon as a lower level 
module is instantiated, a full set of signals named 
“instance_name.port_name” (see fig. 5) is created 
to ease the connections with other elements. Later 
on, any ‘dot’ will be replaced by an ‘underline’ 
because of HDL compatibility issues. 

– When the description of an instantiated module is 
located on another file, a ‘RequireFile’ box must be 
used before the header box to allow a joint 
compilation. However, the ASM++ compiler 
identifies any previously compiled design to avoid 
useless efforts and invalid duplications. 

– VHDL users may include libraries or packages 
using their ‘library’ and ‘use’ sentences, but also 
before any header box. 

– Nowadays, compiler does not support reading 
external HDL files, in order to instantiate hand 
written modules. A prototype of them, as shown at 
fig. 4, can be used instead. 

Using these features, an example with a slightly 
improved multiplier can be easily designed. First of all, a 
prototype of a small FIFO memory is declared, as shown 
at fig. 4, thus compiler may know how to instantiate and 
connect this module, described elsewhere on a Verilog 
file. Then three FIFO memories are instantiated to 
handle the input and output data flows, as shown at fig. 
5, so several processors may feed and retrieve data from 
this processing element.  

 

Figure 4. A prototype of an external design. 

                                                           
1 Actually, designers may also use MS Visio 2003 or ConceptDraw. 

However, the only supported file format is VDX. 

 

 

Figure 5. An example of hierarchical design. 

The ASM++ chart of fig. 5 can be compared with its 
arranged compilation result, shown below. The 
advantages of this methodology on flexibility, clarity and 
time saving are evident. Not always a text based tool is 
faster and more productive than a graphical tool. 

 
module hierarchical_design (clk, reset,  inA, inB, outP, 
            readyA, readyB, readyP,  pushA, pushB, popP); 
 

 parameter width  = 16; // 16x16 => 32 
 parameter depth =   6; // 64-level buffers 
 

 input    clk, reset; 
 

 output    readyA; 
 input    pushA; 
 input   [width-1:0] inA; 
 

 output    readyB; 
 input    pushB; 
 input   [width-1:0] inB; 
 

 output    readyP; 
 input    popP; 
 output  [2*width-1:0] outP; 
 

 wire   activate; 
 

 wire   fifoA_clk,        fifoA_reset; 
 wire   [width-1:0] fifoA_dataIn, fifoA_dataOut; 
 wire   fifoA_push,     fifoA_pop; 
 wire   fifoA_empty,   fifoA_full; 
 fifo  # ( 
    .width(width), .depth (depth) 
 )  fifoA  ( 
    .clk         (fifoA_clk), .reset       (fifoA_reset), 
    .data_in (fifoA_dataIn), .data_out (fifoA_dataOut), 
    .push     (fifoA_push), .pop         (fifoA_pop), 
    .empty   (fifoA_empty), .full          (fifoA_full) 
 ); 
 

 wire   fifoB_clk,        fifoB_reset; 
 wire   [width-1:0] fifoB_dataIn, fifoB_dataOut; 
 wire   fifoB_push,     fifoB_pop; 
 wire   fifoB_empty,   fifoB_full; 
 fifo  # ( 
    .width(width), .depth (depth) 
 )  fifoB  ( 
    .clk        (fifoB_clk), .reset       (fifoB_reset), 
    .data_in (fifoB_dataIn), .data_out (fifoB_dataOut), 
    .push     (fifoB_push), .pop         (fifoB_pop), 
    .empty   (fifoB_empty), .full          (fifoB_full) 
 ); 

 



 wire   AxB_clk, AxB_reset; 
 wire   AxB_go, AxB_ready, AxB_done; 
 wire    [width-1:0] AxB_inA, AxB_inB; 
 wire [2*width-1:0] AxB_outP; 
 multiplier  # ( 
    .N(width) 
 )  AxB  ( 
    .clk (AxB_clk),  .reset (AxB_reset), 
    .go (AxB_go),   .ready(AxB_ready), .done(AxB_done), 
    .inA(AxB_inA),  .inB    (AxB_inB),     .outP(AxB_outP) 
 ); 
 

 wire   fifoP_clk,        fifoP_reset; 
 wire [2*width-1:0] fifoP_dataIn, fifoP_dataOut; 
 wire   fifoP_push,     fifoP_pop; 
 wire   fifoP_empty,   fifoP_full; 
 fifo  # ( 
    .width(2 * width), .depth (depth) 
 )  fifoP  ( 
    .clk        (fifoP_clk), .reset       (fifoP_reset), 
    .data_in (fifoP_dataIn), .data_out (fifoP_dataOut), 
    .push     (fifoP_push), .pop         (fifoP_pop), 
    .empty   (fifoP_empty), .full          (fifoP_full) 
 ); 
 

 assign fifoA_clk  = clk; // Default connections 
 assign fifoB_clk  = clk; 
 assign AxB_clk  = clk; 
 assign fifoP_clk  = clk; 
 assign fifoA_reset = reset; 
 assign fifoB_reset = reset; 
 assign AxB_reset = reset; 
 assign fifoP_reset = reset; 
 

 assign fifoA_push = pushA;     // User connections 
 assign fifoA_dataIn = inA; 
 assign fifoA_pop  = activate; 
 

 assign fifoB_push = pushB; 
 assign fifoB_dataIn = inB; 
 assign fifoB_pop  = activate; 
 

 assign AxB_inA  = fifoA_dataOut; 
 assign AxB_inB  = fifoB_dataOut; 
 assign AxB_go  = activate; 
 

 assign fifoP_push = AxB_done; 
 assign fifoP_dataIn = AxB_outP; 
 assign fifoP_pop  = popP; 
 

 assign activate   = AxB.ready & ~fifoA_empty 
     & ~fifoB_empty & ~fifoP_full; 
 

 assign outP   = fifoP_dataOut; 
 assign readyA  = ~fifoA_full; 
 assign readyB  = ~fifoB_full; 
 assign readyP  = ~fifoP_empty; 
 

endmodule      /// hierarchical_design 
 

4. Encapsulating connections using pipes 

Following this bottom-up methodology, the next step 
is using ASM++ charts to design full systems. As stated 
above, a chart can be used to instantiate several modules 
and connect them, with full, simple and easy access to all 
port signals. 

However, system designers need to know how their 
available IP modules can or must be connected, in order 
to build a system. Probably, they need to read thoroughly 
several data sheets and try different combinations, to 
finally match their requirements. Nonetheless, when they 
become experts on those modules, newer and better IP 

modules are developed, so system designers must start 
again and again. 

This paper presents an alternative to this situation, 
called “Easy-Reuse”. During the following explanations, 
please, refer to figures 6 to 9. 

– First of all, a fully new concept must be introduced: 
an ASM++ chart may describe an entity/module 
that will be instantiated, like ‘multiplier’ at fig. 3, 
but additionally it may be used for a description 
that will be executed (see figs. 8 and 9). The former 
will just instantiate a reference to an outer 
description, meanwhile the later will generate one 
or more sentences inside the modules that call 
them. To differentiate those modules that will be 
executed, header boxes enclose one or more 
module names using ‘<’ and ‘>’ symbols. Later on, 
these descriptions will be processed each time an 
instance or a ‘pipe’ (described below) calls them. 

– Furthermore, the ASM++ compiler has been 
enhanced with PHP-like variables [15]. They are 
immediately evaluated during compilation, but they 
are available only at compilation time, so no circuit 
structures will be directly inferred from them. Their 
names are preceded by a dollar sign (‘$’), they may 
be assigned with no previous declaration and store 
integer values, strings or lists of freely indexed 
variables. 

– In order to differentiate several connections that 
may use the same descriptor, variables are used 
instead of parameters or generics. The 
corresponding field at a header box, when using it 
to start a connection description, is used to define 
default values for several variables (see fig. 8); 
these specifications would be changed by pipes on 
each instantiation (see fig. 6). 

– Usual ASM boxes are connected in a sequence 
using arrows with sense; a new box called “pipe” 
can be placed out of the sequence and connect two 
instances through single lines, with no arrows. 

– When compiler finishes the processing of the main 
sequence, it searches all pipes, looks for their 
linked instances, and executes the ASM charts 
related to those connections. Before each operation, 
it defines two automatic variables to identify the 
connecting instances. As said above, the pipe itself 
may define additional variables to personalize and 
differentiate each connection. 

– As soon as several pipes may describe connections 
to the same signal, a resolution function must be 
defined to handle their conflicts. A tristate function 
would be used, but HDL compilers use to refuse 
such connections if they suspect contentions; 
furthermore, modern FPGAs do not implement 
such resources any more because of their high 
consumption, thus these descriptions are actually 
replaced by gate-safe logic. Subsequently, a wired-
OR, easier to understand than a wired-AND, has 



been implemented when several sources define 
different values from different pipe instantiations 
or, in general, from different design threads. 

– The last element required by ASM++ charts to 
manage automatic connections is conditional 
compilation. A diamond-like box, with double lines 
at each side, is used to tell the ASM++ compiler to 
follow one path and fully ignore the other one. 
Thus, different connections are created when, for 
example, a FIFO memory is accessed from a 
processor to write data, to read data or both. 

Using these ideas, a SoC design may now encapsulate 
not only the functionality of several components, but 
also their connections. 

Figure 6 describes a small SoC that implements a 
Harvard-like DSP processor (see [13]) connected to a 
program memory, a 32-level FIFO and a register. First of 
all, two C-like compiler directives are used to specify the 
HDL language and a definition used later; a VDX file 
that describes the DSP processor is also included before 
giving a name to the SoC design. Then, all required 
modules are instantiated and connected using pipes.  

 

Figure 6. A small SoC design using pipes. 

A small program memory has been designed for 
testing purposes, as shown at fig. 7: the upper chart 
describes a ROM memory with a short program that 
emulates the behavior of a Xilinx Block RAM, and the 
lower chart describes how this synchronous memory 
must be connected to the DSP. This figure illustrates the 
use of automatic variables (‘$ProgMem’ and 
‘$DSPuva18’, whose values will be “mem_01” and 
“dsp_01”, respectively) and the difference between 
modules that can be instantiated or executed.  

 

Figure 7. Charts may describe connections. 

The pipe at figure 6 with text “RW250” describes the 
connection of a FIFO memory (see fig. 4) to a 
DSPuva18 processor [13], thus it executes the ASM++ 
chart shown at fig. 8. When executing this pipe, a ‘0’ 
value is firstly assigned to variables ‘$port’, 
‘$write_side’ and ‘$read_side’, as stated by the header 
box; then these values are changed as specified by the 
pipe box (see the defined value of ‘RW250’); finally, the 
chart of figure 8 generates the HDL code that fully 
describes how “fifo_01” device is connected to 
“dsp_01” processor for reading and writing using port 
‘250’ for data and port ‘251’ for control (getting the state 
through a read and forcing a reset through a write). 



 

Figure 8. An ASM++ chart that describes how a 
FIFO must be connected to a DSP processor. 

Two final ASM++ charts will be described at figure 
9, but other required charts have not been included for 
shortness. The chart at left specifies how the instance 
named ‘SoC_iface’ at figure 6 must be executed, not 
instantiated, in order to generate two control inputs and 
to connect them to all modules. The diagram at right 
generates additional I/O signals and connects them to the 
register controlled by the DSP through its port ‘0’.  

 

Figure 9. Charts may describe I/O interface too. 

Several sentences of the HDL code generated by the 
ASM++ compiler when processing these diagrams are 
displayed following, revealing that ASM++ charts are 
fully capable of describing SoC designs using an 
intuitive, easy to use and consistent representation. 

 
// I/O interface described by ‘SoC_iface’ instance and pipe (see figure 9): 
input   clk, reset; 
output  [31:0]  reg_01_LEDs; 
 

// A connection described by “ <SoC_iface> <Register>” pipe: 
assign  reg_01_LEDs = reg_01_dataOut; 
 

// Connecting dsp_01 to mem_01, its program memory (see figure 6): 
assign  mem_01_rst = dsp_01_progReset; 
assign  mem_01_addr = dsp_01_progAddress; 
assign  dsp_01_progData = mem_01_data; 
 
 

// Connecting reg_01 to dsp_01 (at port ‘0’): 
assign  reg_01_we = dsp_01_portWrite & dsp_01_portAddress == 0); 
assign  reg_01_dataIn = dsp_01_dataOut; 
 

// Connecting fifo_01 to dsp_01 (at ports ‘250’ and ‘251’): 
always @ (posedge fifo_01_clk) 
begin 
 fifo_01_reset  <=  dsp_01_portWrite & (dsp_01_portAddress == 250 + 1); 
end 
assign  fifo_01_dataIn = dsp_01_ dataOut; 
assign  fifo_01_push = dsp_01_portWrite & (dsp_01_portAddress == 250); 
assign  fifo_01_pop = dsp_01_portRead & (dsp_01_portAddress == 250); 
 

// Connecting several sources to dsp_01 using a wired-OR: 
assign  asm_thread_1017_dsp_01_dataIn =  
 (dsp_01_portRead & (dsp_01_portAddress == 0)) ? reg_01_dataOut : 0; 
assign  asm_thread_1021_dsp_01_dataIn =  
 (fifo_01_pop) ? fifo_01_dataOut : 
 (dsp_01_portRead & (dsp_01_portAddress == 250+1)) ? 
 {fifo_01_full, fifo_01_almostFull, fifo_01_half, fifo_01_almostEmpty, fifo_01_empty} : 0; 
assign  dsp_01_dataIn = 
 asm_thread_1017_dsp_01_dataIn  |  asm_thread_1021_dsp_01_dataIn; 

 

5. Conclusions 

This article has presented a powerful and intuitive 
methodology for SoC design named Easy-Reuse. It is 
based on a suitable extension of traditional Algorithmic 
State Machines, named ASM++ charts, its compiler and 
a key idea: charts may describe entities or modules, but 
they also may describe connections between modules. 
The ASM++ compiler developed to process these charts 
in order to generate VHDL or Verilog code has been 
enhanced further to understand a new box called pipe 
that implements the required connections. The result is a 
self-documented diagram that fully describes the system 
for easy maintenance, supervision, simulation and 
synthesis. 
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