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Abstract 

This article presents the application of a graphical 
methodology used to develop a Digital Signal Processor 
designed for FPGA. The instruction set and main 
features of this processor are introduced. Then, a 
modified Algorithmic State Machine methodology, 
named ASM++, is applied to fully describe the 
processor implementation. This processor has been 
simulated and physically tested on Xilinx Spartan-3 
devices, achieving 37.5~75 MIPS and up to 150 MOPS 
running at 75 MHz. 

 

1. Introduction 

Most intellectual property (IP) modules are designed 
as synchronous digital circuits using a standard hardware 
description language (HDL), usually VHDL or Verilog. 
Designers usually prefer a text-based tool to describe 
their circuits because editing and managing texts is 
easier than dealing with the arrangement of schematics. 
Compared to schematic entry, productivity is increased, 
mostly when parametrical modules are required. 

To assist designers in their daily job, several visual 
tools have been developed to facilitate the circuit 
behavior description and understanding, namely Finite 
State Machines (FSM) and Algorithmic State Machine 
(ASM) [1], [3]. However, these tools are limited in their 
scope, so they are applied only on small state machines 
and circuits. 

This paper presents several modifications of standard 
ASM diagrams with the aim of applying this 
methodology to design real-life circuits, document them 
and ease their supervision [8]. As an example, this 
methodology has been successfully applied in the design 
of an FPGA based DSP processor. 

2. The DSPuva18 processor 

The DSPuva18 processor is based on the former 
DSPuva16 [6], a Digital Signal Processor developed for 

Power Electronic applications [2]. These are the main 
features of this new processor and their improvements: 

• Its computational instructions are executed using 
two clock cycles, rather than four [6], thanks to the 
use of an FPGA hardwired multiplier. 

• Its control instructions (call, ret, jp, …) are usually 
executed in one clock cycle. 

• It has adaptive conditional jumps and returns: it 
introduces one or two wait states to leave previous 
operations to finish. 

• The program length can be up to 64K instructions. 
• It can execute from 16 to 128 nested subroutines. 
• The data memory is up to 64K words, with fast 

direct and indirect access (two clock cycles). 
• It has direct access to 256 ports/devices. 
• The instruction set, as shown in table 1, has been 

designed around 17 basic instructions, but most of 
these instructions lead to more possibilities. 

• It has access to immediate constants in program 
code to ease filter implementation. 

• An implicit access to last port used, with write back 
capability, has been introduced to speed up filters. 
It allows up to four operations per instruction. 

• The range of fixed-point registers and values can be 
selected at instantiation time between ±1, ±2, ±4 
and ±8. This feature eases in-circuit debugging. 

As can be seen, some of these features are common 
with other processors, but other ones are new. The basic 
instruction set of this processor is shown below. 

Table 1. DSPuva18 basic instruction set. 

OpCode Mnemonic Function 

0000 dddd dddd dddd call   <destination-address> Jump to a subroutine. 

0001 dddd dddd dddd goto <destination-address> Unconditional jump. 

0010  0fff   dddd dddd jpFLAG <relative-jump> Conditional jump. 

0010  1fff     ••••   •••• retFLAG Conditional return. 

0011 kkkk  kkkk kkkk imm K12 Prepare a constant. 

0100 kkkk  kkkk nnnn rN = port(K8) Read from a direct port. 

0101 kkkk  kkkk nnnn port(K8) = rN Write to a direct port. 

0110  ••••   bbbb nnnn rN = mem({rB,K16}) Read from memory. 



0111  ••••   bbbb nnnn mem({rB,K16}) = rN Write to memory. 

1000  sfff   bbbb nnnn ifFLAG rN = [–]{rB,K16} Conditional assignment. 

1001 xxxx  bbbb nnnn rN = fx({rN,*LP},{rB,K16}) Extra functions. 

1010 nnnn bbbb aaaa rN = {rA,*LP} + {rB,K16} Addition. 

1011 nnnn bbbb aaaa rN = {rA,*LP} – {rB,K16} Subtraction. 

1100 nnnn bbbb aaaa rN =    {rA,*LP} * {rB,K16} Multiply two values. 

1101 nnnn bbbb aaaa rN = – {rA,*LP} * {rB,K16} Multiply and change sign. 

1110 nnnn bbbb aaaa rN += {rA,*LP} * {rB,K16} Positive accumulation. 

1111 nnnn bbbb aaaa rN –= {rA,*LP} * {rB,K16} Negative accumulation. 

 
This basic instruction set is extended as seen on tables 

2 and 3. Additionally, most instructions allow the use of 
a register ('rB') or a 16-bit constant ('K16'), easing 
constant coefficient filter implementation. This constant 
is built using four bits of the current instruction and 
twelve bits of the previously executed 'imm' instruction. 

At the same time, a completely new feature has been 
added: when 'r0' is addressed as register 'rA', the last port 
used ('*LP') is read, the read value is used instead of r0's 
value, and then it is written back to the same port. As 
seen later, this feature speed up the implementation of 
large filters, requiring just one instruction per tap. 

The control instructions of this processor are easy to 
understand. First of all, 'call' and 'goto' execute an 
absolute jump to a 4K to 64K address in one clock cycle. 
As long as only twelve bits are available to give the 
destination address, its value is multiplied by 1, 2, 4, 8 or 
16, depending on the processor model, thus allowing 
larger programs. Consequently, all subroutines must be 
aligned to a reachable address, but the assembler can do 
it easily using the '#align' directive. 

Conditional jumps and returns are a bit different (see 
the eight available conditions on table 2, that shows 
conditional assignments): they execute their task, but 
they wait one clock cycle for arithmetic and logic 
operations to finish, and two clock cycles for 
multiplications. This way, the use of interleaving 'nop' 
instructions is avoided. When unconditional 'jp' or 'ret' is 
used, it is executed in one clock cycle. 

The access to external data is fast and flexible. The 
processor can address up to 256 direct ports, usually 
related to physical devices or small memories, maybe 
shared with other FPGA processors. When large 
amounts of data must be used, the processor implements 
a dedicated interface enabling the use of synchronous 
FPGA memories like Xilinx BlockRAM or Altera M4K 
and M-RAM. It can address up to 64K words per page, 
and different pages may be selected using a page-register 
controlled through a port. All these accesses are 
executed using two clock cycles. 

This processor can conditionally load a register with a 
constant or the value of another register (see table 2), 
and it also implements more functions as shown in 
table 3. Right and left shifts are a bit different than 

expected because most used shifts are the shortest ones, 
thus using shifts by 7, 3, 2 and 1 rather than 8, 4, 2 and 1 
it is on average better. The 'max' and 'min' instructions 
are also useful, particularly "rN = abs(rN)" is recognized 
by the assembler and replaced by "rN = max(rN,–rN)". 
All these instructions use two clock cycles for their 
execution, like additions and subtractions; their results 
are immediately available in the following instruction. 

The four multiplying instructions, with optional 
positive or negative accumulation, are executed using 
only two clock cycles, but the result cannot be used as an 
operand, except for accumulation, at the following 
instruction. If required, a one clock 'nop' (an assembler 
macro replaced by "jp <next-address>") must be added. 

Table 2. Conditional assignments of DSPuva18. 

OpCode Mnemonic Function 

1000 0000 bbbb nnnn        rN =   {rB,K16} Load a register. 

1000 0001 bbbb nnnn ifV   rN =   {rB,K16} Load if oVerflow. 

1000 0010 bbbb nnnn ifEQ rN =   {rB,K16} Load if EQual to 0. 

1000 0011 bbbb nnnn ifNE rN =   {rB,K16} Load if Not Equal to 0. 

1000 0100 bbbb nnnn ifGT rN =   {rB,K16} Load if Greater Than 0. 

1000 0101 bbbb nnnn ifGE rN =   {rB,K16} Load if Greater or Equal. 

1000 0110 bbbb nnnn ifLE rN =   {rB,K16} Load if Less or Equal. 

1000 0111 bbbb nnnn ifLT rN =   {rB,K16} Load if Less Than 0. 

1000 1000 bbbb nnnn        rN = –{rB,K16} Load changing sign. 

1000 1001 bbbb nnnn ifV   rN = –{rB,K16} Load if oVerflow. 

1000 1010 bbbb nnnn ifEQ rN = –{rB,K16} Load if EQual to 0. 

1000 1011 bbbb nnnn ifNE rN = –{rB,K16} Load if Not Equal to 0. 

1000 1100 bbbb nnnn ifGT rN = –{rB,K16} Load if Greater Than 0. 

1000 1101 bbbb nnnn ifGE rN = –{rB,K16} Load if Greater or Equal. 

1000 1110 bbbb nnnn ifLE rN = –{rB,K16} Load if Less or Equal. 

1000 1111 bbbb nnnn ifLT rN = –{rB,K16} Load if Less Than 0. 

Table 3. Extra instructions of DSPuva18. 

OpCode Mnemonic Function 

1001 0000 bbbb nnnn rN = rB >> 7 Right shift seven bits. 

1001 0100 bbbb nnnn rN = rB >> 3 Right shift three bits. 

1001 1000 bbbb nnnn rN = rB >> 2 Right shift two bits. 

1001 1100 bbbb nnnn rN = rB >> 1 Right shift one bit. 

1001 0001 bbbb nnnn rN = rB << 7 Left shift seven bits. 

1001 0101 bbbb nnnn rN = rB << 3 Left shift three bits. 

1001 1001 bbbb nnnn rN = rB << 2 Left shift two bits. 

1001 1101 bbbb nnnn rN = reverse rB Reverse all bits. 

1001 0010 bbbb nnnn rN = {rN,*LP} and {rB,K16} Logic AND. 

1001 0110 bbbb nnnn rN = {rN,*LP} or  {rB,K16} Logic OR. 

1001 1010 bbbb nnnn rN = {rN,*LP} xor {rB,K16} Logic XOR. 



1001 1110 bbbb nnnn rN = not rB Logic NOT. 

1001 0011 bbbb nnnn rN = min ({rN,*LP},{rB,K16}) Minimum of two values. 

1001 0111 bbbb nnnn rN = max({rN,*LP},{rB,K16}) Maximum of two values. 

1001 1011 bbbb nnnn rN = min({rN,*LP},–{rB,K16}) Minimum changing sign. 

1001 1111 bbbb nnnn rN = max({rN,*LP},–{rB,K16}) Maximum changing sign. 
 
A program example that implements an infinite 

impulse response filter (IIR) is shown below. Most 
instructions of this filter execute up to four operations: a 
read from last used port (through '*LP'), a write back of 
the read value to the same port (so it reads an old sample 
or output from a FIFO and returns it to the same FIFO 
for the next filter update), a fixed-point 18x18 product 
and a positive 32-bit accumulation. This means 37.5 
MIPS and 150 MOPS running at 75 MHz. 

 
/* 
 Demonstration program of DSPuva18 for FPGAworld'2007 
 2007/08/27    Santiago de Pablo (sanpab@eis.uva.es) 
*
 
/ 

#model E    // Programs up to 64K instructions 
#range 8    // DSP values between +-8.0 
#include “uva18std.h” // Several definitions 
  
// IIR filter implementation: 
//     Input X values are available at port 200. 
//     Output Y values are written at port 201. 
//     Old X values are stored in a small FIFO at port 202. 
/
 
/     Old Y values are stored in a small FIFO at port 203. 

 #define IN_X  200 
 #define OUT_Y  201 
 #define FIFO_X  202 
 
 

#define FIFO_Y  203 

 #define YC1  0.9345 
 // Define also YC2...YC4 and XC0...XC5 constants. 
  
0x0000:     // Programs begins here after reset 
  call InitFilter  // Prepare the filter 
Loop: call UpdateFilter // 14 + 2x(NX + NY) clks 
 
 

 jp Loop    // Infinite loop (2 MSPS at 70 MHz) 

#align 
InitFilter: 
 // First reset FIFO_X and FIFO_Y (not done here) 
 // Then load dummy values as old samples 
 r1 = 0.0 
 port(FIFO_Y) = r1 // Load four values on FIFO_Y: 
 port(FIFO_Y) = r1 //   they are y4, y3, y2 & y1. 
 port(FIFO_Y) = r1 
 port(FIFO_Y) = r1 
 port(FIFO_X) = r1 // Load five values on FIFO_X: 
 port(FIFO_X) = r1 //   they are x5, x4, x3, x2 & x1. 
 port(FIFO_X) = r1 
 port(FIFO_X) = r1 
 port(FIFO_X) = r1 
 ret 

#align 
UpdateFilter: 
 r2 = port(FIFO_Y) // Read y4 value (and loose it later) 
 r1 =           r2 * YC4 // … and multiply y4 by its coefficient 
 r1 = r1 + *LP * YC3 // Get y3 and multiply it by its coefficient 
 r1 = r1 + *LP * YC2 // Get y2 and multiply it by its coefficient 
 r1 = r1 + *LP * YC1 // Get y1 and multiply it by its coefficient 
 r2 = port(FIFO_X) // Read x5 value (and loose it later) 
 r1 = r1 +   r2 * XC5 // … and multiply x5 by its coefficient 
 r1 = r1 + *LP * XC4 // Get x4 and multiply it by its coefficient 
 r1 = r1 + *LP * XC3 // Get x3 and multiply it by its coefficient 
 r1 = r1 + *LP * XC2 // Get x2 and multiply it by its coefficient 
 r1 = r1 + *LP * XC1 // Get x1 and multiply it by its coefficient 
 r2 = port(IN_X)  // Get a new x0 value (from an A/D?) 
 r1 = r1 +   r2 * XC0 // … and multiply x0 by its coefficient 
 port(FIFO_X) = r2 // Put x0 value on its FIFO for later use 
 port(FIFO_Y) = r1 // Put y0 value on its FIFO for later use 
 port(OUT_Y) = r1 // Output of the IIR filter (to a D/A?) 
 ret     // Finish 

3. ASM++ diagram of DSPuva18 

The design of this processor has been entirely done 
using ASM++ diagrams. These diagrams, proposed at 
[8] and described further here, are an extension of 
Algorithmic State Machines [1], [3], a methodology used 
forty years ago for the development of microprocessors. 
As can be seen with this example, the ASM++ diagrams 
are now fully capable of describing whole IP modules. 

This diagram and the manually generated equivalent 
code use Verilog 2001, but VHDL may be used instead. 
An ASM++ compiler that accept standard Verilog and 
VHDL languages for input and output is in progress. 

The first ASM++ box of this design, as seen below on 
Fig. 1, is a "code box", able to introduce Verilog or 
VHDL code. It is used in this case to describe the 
processor interface. 

Figure 1. Design header using Verilog. 

 



Afterwards, a second code box specifies several 
internal signals. As long as this box has global meaning, 
other signals would be and will be declared later. 

Figure 2. Declaration of several signals. 

 
The third box introduces a first difference between 

ASM++ and the pure code. It specifies global defaults 
for synchronous and asynchronous internal signals and 
outputs. If the user does not assign anything to a 
synchronous signal in a state the default behavior is to 
keep its last value; for an asynchronous signal the 
compiler must implement a don't care logic value. 
Designer can easily change this default behavior using 
this box. 

Figure 3. Default values of signals and outputs. 

 
The following two code boxes are a combinational 

instruction decoder implemented using a C-like 
"#define" compiler  directive. Other directives are also 
available to include files and other purposes. 

Figure 4. Instruction decoder. 

 

After all these definitions, a box is used to specify the 
synchronism of this circuit. In this case there is a unique 
clock signal, named 'clk', but several clocks may be used 
instead. Then, three branches are initiated: the first one is 
a state machine named "ControlUnit"; the second one 
contains several synchronous and asynchronous 
components that assist at any time to the previous state 
machine; the last one is the data path of this processor, 
also described as an independent thread. Any 
dependence between branches may be implemented 
using the name of the state of each thread. This example 
shows how easily ASM++ diagrams may describe multi-
clocked or multi-threaded circuits. 

Figure 5. Parallel circuits description. 

  
The first branch, which state variable is named 

'ControlUnit' as seen on Fig. 6, begins with an 
asynchronous reset sequence controlled by the active 
high 'reset' signal. This box increases the ASM 
possibilities: standard diagrams cannot describe properly 
reset sequences. 

Then, a first state named 'Main', which begins with an 
oval "state box", executes several overlapped operations 
from the previous instruction and decodes the current 
instruction. For 'call', 'goto', 'jp' and 'ret' instructions only 
one clock is needed, so the next state is 'Main' again; 
other instructions require a 'Second' state. 

Figure 6 shows more ASM++ features: 
– Synchronous operations, those that are executed 

when the current clock cycle finishes, like "SP <= 
SP + 1", are described using a rectangular box 
anywhere. This is a difference with traditional 
ASM diagrams, where only unconditional 
operations use these boxes at the beginning of any 
clock cycle. 

– Asynchronous operations, executed all through the 
current clock cycle, like "nextPC <= PC + 1", use a 
box with bent sides. This is a nice feature, that 
shows the difference in the behavior between 
synchronous and asynchronous signals. When 
Verilog language is used, the equal operator ('=') 
may also be used for asynchronous assertions. 

– Conditions are expressed in the same way than 
standard ASM diagrams, but also multiple output 
decisions are included. 

– The use of VHDL/Verilog expressions allows an 
easy implementation of complex functions, like a 
register file or a returning address stack, that need 
vector notation. 



Figure 6. Processor control unit (I). 

  
The following state named 'Second', seen at Fig. 7, 

executes all computational instructions after receiving 
operands from the previous clock cycle. Actually, this 
state just activates all the required control signals, 
because data path and external devices do the real job. 

Figure 7. Processor control unit (II). 

 
Readers are kindly invited to translate this state 

machine to HDL code1, either using VHDL or Verilog. 
                                                           

1 During the translation process, at least two processes or always 
blocks are needed, one of them for all clk-dependent synchronous 
operations and the other one, unconnected from the former, for the 
asynchronous operations. ASM++ diagrams join both worlds. 

Then, the relationship between ASM++ and HDL arises, 
and the advantages of using a graphical tool to design 
and/or document complex circuits also becomes clear. 

To complete control tasks a second thread is more 
than convenient (see Fig. 8). Several operations must be 
done during or at the end of all clock cycles. Writing 
these operations in the previous thread is at least 
uncomfortable and prone to mistakes. Real life circuits 
require the possibility of writing parallel threads, but 
standard ASM diagrams cannot do it. 

A second detail of Fig. 8 is that, from the point of 
view of the 'PC' signal, this is a state-less state machine: 
it needs no state at all because it has just one state. 
Additionally, the only reference to a clock here is the 
rectangular box used for 'PC'; in absence of it, this could 
be a clock-less thread, a pure-combinational circuit 
properly described using ASM++ diagrams. 

Figure 8. Processor control unit (III). 

 
Following figures, from 9 to 13, implement the data 

path of this processor. First of all, a register file keeps 
the 32-bit values of r0 to r15 registers. Its design is based 
on two dual-ported distributed memories, allowing up to 
four asynchronous reads and one synchronous write on 
every clock cycle; only three reads are actually needed. 
During the state 'Second', if 'aluCE' signal is asserted, 
two operands are stored at register 'regA' and 'regB' for 
their operation during the following 'Main' state. 

Figure 9. Processor data path (I). 

 
After operand selection, several computational units 

calculate different results throughout the clock period: a 



right or left shifted value, a logic or arithmetic result [4], 
[7], and an update value used for conditional 
assignments and maximum and minimum evaluation. 

Figure 10. Processor data path (II). 

 
The core of this processor, a fixed-point 18x18 

multiplier with 32-bit result, is described below in such a 
way that most synthesis tools infer a wired synchronous 
multiplier: it registers two operands during one clock 
cycle and gives the product of them at the end of the 
following cycle. This segmentation stage introduces a 
one clock latency, so a 'nop' or any dummy instruction 
must be used before retrieving the product result. 

Figure 11. Processor data path (III). 

 

When all partial results are available, they are 
multiplexed in order to store the final value in the 
register file and to update flags. In these diagrams, it is 
not important if a signal like 'busN' has been used before 
its declaration (see Figs. 9 and 12). 

Figure 12. Processor data path (IV). 

 
 

Figure 13. Processor data path (V). 

 



4. Conclusions 

This article has presented a small and easy to 
understand digital signal processor developed using 
Verilog and ASM++ diagrams for FPGA. Throughout 
this paper, the capabilities of ASM++ for the 
development and documentation of IP modules has 
arisen. Additionally, supervision of complex designs 
would be ease when using this methodology. Compared 
with classic HDL description, the learning curve of 
ASM++ is shorter and the possibility of mixing 
synchronous and asynchronous signals is also a great 
advantage. 

The proposed DSP processor executes all its 
instructions in one or two clock cycles, achieving up to 
150 MOPS at 75 MHz on Xilinx Spartan3 devices. It 
introduces several new features: a variable code length 
between 4K and 64K, a variable range at implementation 
time between ±1 and ±8 for numerical values, a 
transparent access to constants and a built-in read with 
write back capability to speed up filter implementation. 
This processor is currently been used in power 
electronics applications. 

5. Acknowledgments 

The authors would like to acknowledge the partial 
financial support of eZono AG at Jena, Germany, ISEND 
SA at Boecillo, Valladolid, Spain, and the regional 
government, Junta de Castilla y León, under grants 
VA004B06 and VA021B06. 

References 

[1] C.R. Clare, Designing Logic Using State Machines, 
McGraw-Hill, 1973. Referenced by [5]. 

[2] epYme workgroup, online at http://www.dte.eis.uva.es/ 
epYme, last updated on August 2007. 

[3] D.D. Gajski, Principles of Digital Design, Prentice Hall, 
Upper Saddle River, NJ, 1997. 

[4] J. Gray, “Designing a Simple FPGA-Optimized RISC 
CPU and System-on-a-Chip”, DesignCon’2001, online at 
http://www.fpgacpu.org/gr/index.html, 2001. 

[5] S. Leibson, “The NMOS II Hybrid Microprocessor: 
Fusing silicon, ceramic, and aluminium with rubber baby 
buggy bumpers”, online at http://www.hp9825.com/html 
/hybrid_microprocessor.html, revised on August 2007. 

[6] S. de Pablo et al., “A soft fixed-point Digital Signal 
Processor applied in Power Electronics”, FPGAworld 
Conference 2005, Stockholm, Sweden, 2005. 

[7] S. de Pablo et al., “A very simple 8-bit RISC processor 
for FPGA”, FPGAworld Conference 2006, Stockholm, 
Sweden, 2006. 

[8] S. de Pablo et al., “A proposal for ASM++ diagrams”, 
10th Workshop on Design and Diagnostics of Electronic 
Circuits and Systems (DDECS 2007), Kraków, Poland, 
2007. 

 
 
 
 
 

 


