
A very simple 8-bit RISC processor for FPGA

S. de Pablo, J.A. Cebrián, L.C. Herrero
University of Valladolid

E.T.S.I.I., Paseo del Cauce, s/n
47011 Valladolid (Spain)

sanpab@eis.uva.es

 A.B. Rey
Polytechnic University of Cartagena

Ant. Cuartel de Antiguones (C. de la Muralla)
30202 Cartagena, Murcia (Spain)

alexis.rey@upct.es

Abstract

This article presents the “RISCuva1” processor, a
very simple 8-bit RISC processor for FPGA. Its most
important feature is that this processor is very simple. Its
Verilog code has about 120 sentences, and most of them
are easy to understand. It would be a good starting point
for students who need to know how processors work and
for those engineers who wish to design their own
processor. The proposed processor has been physically
tested on Xilinx SpartanIIe FPGAs with a performance
of 40 MIPS in -6C grade devices.

1. Introduction

Over the past 40 years, it seems that Moore’s Law [9]
has been true: from 50 transistors per chip we have
reached to more than 50 million transistors, doubling
every two years. We may think, why not, that in the near
future the number of processors per chip would also
duplicate every two years. Most personal computers
have nowadays two processor cores on a chip. Several
student works at the University of Valladolid (Spain) are
also in that trend: first we synthesize on a Xilinx FPGA a
third party processor [2], then we run three DSP
processors to control a photovoltaic system [3][11] and
now we have implemented six small general-purpose
processors for an audio-RF application [1].

This paper presents a very simple 8-bit general
purpose processor for FPGA called “RISCuva1”. Its
small Verilog code demonstrates that it is very easy to
design a simple core with processing capabilities. The
processor size, performance and external interface are
similar to Xilinx picoBlaze, created by Ken Chapman
[4], but this one can execute bigger programs. Its internal
architecture has been inspired in Jan Gray’s GR0000 [5].
More FPGA processors can be found at [6][8][10].

2. Main features of the RISCuva1

The RISCuva1 is an 8-bit general-purpose RISC
processor with Harvard architecture: it gets instructions
on a regular basis using dedicated buses to its program
memory, executes all its native instructions in just one
clock cycle and exchanges data with several devices
using other buses. It allows one source of interrupts.

Figure 1. Processor external connections.

This processor can execute programs with up to 1024
instructions (the equivalent picoBlaze is limited to a
quarter of it) and it exchanges data through 256 ports, all
of them with indirect access and 32 of them –from 224
to 255– also with direct access. The later are more
intended for specific devices, such as an external stack
for data o several seven-segment displays. In addition, it
has special instructions to access external ports in
sequential mode, a great feature for compilers who
continuously access to multi-byte data.

Internally it has sixteen 8-bit general purpose registers
that can be used in all operations. It includes twelve
native operations (arithmetic, logic and bit rotation), but
it also execute others as “macros” (see tables 2 and 3).

To make decisions it uses only two flags, ‘Zero’ and
‘Carry’, that are enough for most situations. With them it
can evaluate up to four conditions. It also has
unconditional jumps (‘goto’), jumps to subroutines

(‘call’) and return from them (‘ret’ and ‘reti’). Its internal
stack for returning addresses allows up to 16 nested
subroutines1. This stack also keeps the value of flags
during interrupt execution.

This processor has been synthesized and tested at a
system frequency of 40 MHz (40 MIPS) on SpartanIIe-
6C devices. Its frequency can be extended up to 85 MHz
when it is implemented standalone2.

3. The instruction set

The instruction set of the RISCuva1 has been
designed following several rules:

– All instructions are executed in just one clock
cycle. Doing so, processor is simpler, smaller,
faster and easier to understand.

– The instruction code is received at the beginning of
each cycle, all operations are executed during the
clock period, and results are stored at the end of it.

– ALU operations take two operands from registers
and store the result in one of them.

– No hardware nor binary codes have been used for
several instructions (‘inc’, ‘nop’, …) that can be
executed using other instructions (an ‘add’ may
replace an ‘inc’, an so on).

– External read and write operations are synchronous.
The result, as shown in table 1, is very simple. It

consists of 29 different instructions, but it can execute a
lot of macros with them.

Table 1. RISCuva1 instruction set.

Opcode Mnemonic Operation

00 00dd dddd dddd call <dest> Call to subroutine

00 01dd dddd dddd goto <dest> Unconditional jump

00 1000 •••• •••• ret Subroutine return

00 1001 •••• •••• reti Interrupt return

00 1010 •••• •••• di Disable interrupts

00 1011 •••• •••• ei Enable interrupts

00 1100 mmmm nnnn mov (rM),rN Write to indirect port

00 1101 •••• nnnn mov (++),rN Write to next port

00 111k kkkk nnnn mov (<k>),rN Write to direct port

01 00dd dddd dddd jpZ <dest> Jump if Z == 1

01 01dd dddd dddd jpNZ <dest> Jump if Z == 0

01 10dd dddd dddd jpC <dest> Jump if C == 1

01 11dd dddd dddd jpNC <dest> Jump if C == 0

10 kkkk kkkk nnnn mov rN,<k> rN = <k>

1 It is very easy to increment the stack to 32 levels or even more.
2 The processor core can be compiled at 85 MHz on -6 devices, but

its performance decreases to 40 MHz when it is connected to a
BlockRAM program memory and other peripherals.

11 0000 mmmm nnnn mov rN,rM rN = rM

11 0001 mmmm nnnn xnor rN,rM rN = rN xnor rM

11 0010 mmmm nnnn or rN,rM rN = rN or rM

11 0011 mmmm nnnn and rN,rM rN = rN and rM

11 0100 mmmm nnnn add rN,rM rN = rN + rM

11 0101 mmmm nnnn adc rN,rM rN = rN + rM + C

11 0110 mmmm nnnn sub rN,rM rN = rN – rM

11 0111 mmmm nnnn sbc rN,rM rN = rN – rM – C

11 1000 •••• nnnn asr rN Arithmetic shift

11 1001 •••• nnnn rrc rN Rotate through carry

11 1010 •••• nnnn ror rN Rotate right

11 1011 •••• nnnn rol rN Rotate left

11 1100 mmmm nnnn mov rN,(rM) Read on indirect port

11 1101 •••• nnnn mov rN,(++) Read on next port

11 111k kkkk nnnn mov rN,(<k>) Read on direct port

Flag ‘Z’ is affected by all ‘1x xxxx’ operations (those

who change a register) and flag ‘C’ changes only when
‘10 00xx’, ‘10 01xx’ or ‘10 10xx’ instructions (ALU
operations) are used.

All jumps use only 10 bits to address their
destination, so programs are limited to 1024 instructions.
This length would be more than enough for most
applications, such as USB controllers [12] and others.
Anyway, it is four times more than classic picoBlaze [4],
and it can be extended in the same way.

External data access is quite good: its indirect
addressing allows the processor to manage variables and
lists on data memory and its direct addressing provides
easy access to peripherals. Additionally, a sequential
access improves multi-byte data manipulation, a nice
feature for compilers3.

Anyway, this instruction set seems to be very poor: it
has no direct increment nor decrement instructions, a
‘nop’ instruction cannot be found, and it would be nice
to find others like ‘push’, ‘pop’, etc. To solve all these
deficiencies, a basic macro set has been included in the
assembler program, as shown in table 2: it replaces
several instruction-like constructions by one or more
processor native instructions who work in the same way,
including the effect on flags. But if programmers want to
use them, they must follow several conventions:
registers ‘r0’ and ‘r1’ must be locked at ‘0x00’ and
‘0x01’ from the beginning of all programs, and register
‘r2’ must not be used (mainly for advanced macro set,
see table 3).

3 When compilers manage multi-byte variables (‘int’, for example)

they need one indexed access –included here as a macro– to the
first byte, and then other accesses to sequential addresses.

Table 2. RISCuva1 basic macro set.

Macro Equivalent Operation

nop mov r0,r0 Do nothing (keep Carry)

inc rN add rN,r1 rN = rN + 1 (r1 = 1!)

dec rN sub rN,r1 rN = rN – 1 (r1 = 1!)

not rN xnor rN,r0 Bit inversion (r0 = 0!)

neg rN not rN; inc rN rN = –rN

xor rN,rM xnor rN,rM; not rN rN = rN xor rM

cmp rN,rM mov r2,rN; sub r2,rM Compare two registers

setC and r0,r0 Set the Carry flag

clrC or r0,r0 Clear the Carry flag

rlc rN adc rN,rN Rotate left through carry

sl0 rN add rN,rN Shift left adding ‘zero’

sl1 rN setC; rlc rN Shift left adding ‘one’

sr0 rN clrC; rrc rN Shift right adding ‘zero’

sr1 rN setC; rrc rN Shift right adding ‘one’

push rN mov (255),rN Send value to data stack

pop rN mov rN,(255) Get from data stack

break Not documented Simulator break-point

halt goto <PC> Stop the processor

The main advantage of not including these

instructions in the processor hardware is that the result is
simpler, so smaller and faster. The instruction decoder
will implement logic functions with less inputs, an
important feature when an FPGA is the main target of
this design.

Table 3. RISCuva1 advanced macro set.

Macro Equivalent Operation

and rN,<k> mov r2,<k>; and rN,r2 AND with constant

or rN,<k> mov r2,<k>; or rN,r2 OR with constant

xor rN,<k> mov r2,<k>; xor rN,r2 XOR with constant

add rN,<k> mov r2,<k>; add rN,r2 ADD with constant

adc rN,<k> mov r2,<k>; adc rN,r2 ADC with constant

sub rN,<k> mov r2,<k>; sub rN,r2 SUB with constant

sbc rN,<k> mov r2,<k>; sbc rN,r2 SBC with constant

clr rN mov rN,0 Clear a register

clr rN":rN':rN clr rN; clr rN'; clr rN"
Clear multi-byte
value

not rN":rN':rN not rN; not rN'; not rN"
Invert multi-byte
value

inc rN":rN':rN
add rN,r1; adc rN',r0;
adc rN",r0

Increment multi-
byte value

dec rN":rN':rN
sub rN,r1; sbc rN',r0;
sbc rN",r0

Decrement multi-
byte value

mov (rM),(rN)
mov r2,(rN);
mov (rM),r2

Move between
ports

mov rN,(<k> + rM)
mov r2,<k>; add
r2,rM; mov rN,(r2)

Indexed read
access

mov rN,(<k> – rM)
mov r2,<k>; sub
r2,rM; mov rN,(r2)

Indexed read
access

mov (<k> + rM),rN
mov r2,<k>; add
r2,rM; mov (r2),rN

Indexed write
access

mov (<k> – rM),rN
mov r2,<k>; sub
r2,rM; mov (r2),rN

Indexed write
access

These advanced macros, and others not shown in

these tables, are included to ease programmers work.

4. Verilog source code

The internal architecture of this processor is RISC
like. It executes all of its native instructions regularly, in
just one clock cycle. Soon after the rising edge of the
clock signal, a 14-bit instruction code is received from
the program memory; these bits are decoded in order to
execute all duties involved by the instruction; when the
following rising edge arrives, all processor parts are
prepared to update to newer values, and the address of
the following instruction has been sent to the program
memory to receive a new instruction code.

The Verilog code of this processor begins, as usual,
with a declaration of its ports. It uses a ‘clk’ signal for
synchronization and an active high ‘reset’. This
processor is connected to a private program memory
through three signals: it sends the address of the
following instruction using ‘progAddress’; on the rising
edge of the next clock cycle it receives the 14-bit code of
the current instruction on ‘progData’. This processor also
sends a ‘progReset’ signal to clear the ‘progData’ value
received from the program memory in order to reset or
interrupt the processor4.

module RISCuva1 (clk, reset,
 progAddress, progData, progReset,
 dataIn, dataOut,
 portAddress, portRead, portWrite,
 intReq, intAck);

 // Inputs and outputs:
 input clk, reset; // Clock and Reset

 output [9:0] progAddress; // Up to 1K instructions (10 bits)
 input [13:0] progData; // Current instruction code
 output progReset; // Reset of Program Memory

 input [7:0] dataIn; // Data input (from an I/O port)
 output [7:0] dataOut; // Data output (through a port)

 output [7:0] portAddress; // Addressed I/O Port (0..255)
 output portRead; // Read signal
 output portWrite; // Write signal

4 This technique was first used by Jan Gray [5]: a RST signal clears

the data output of program memory when Xilinx BlockRAM are
used, and then processor executes a ‘call 0’ (0x0000) instruction.

 input intReq; // Interrupt request
 output intAck; // Interrupt Acknowledge

Now we must decode the instruction code we receive

from program memory: all instructions are executed in
one clock cycle and each bit or group of bits has a
meaning for it.

 // Instruction decoding from the instruction code:
 wire [13:0] opCode = progData; // Instruction code

 wire [1:0] opA = opCode[13:12]; // 1st operation code
 wire [1:0] opB = opCode[11:10]; // 2nd operation code
 wire [1:0] opC = opCode[9: 8]; // 3rd operation code
 wire [3:0] rM = opCode[7: 4]; // Source register
 wire [3:0] rN = opCode[3: 0]; // Destination register

 wire [9:0] immAddr = opCode[9:0]; // Address for jumps
 wire [7:0] immData = opCode[11:4]; // Immediate data
 wire [4:0] immPort = opCode[8:4]; // For direct access

 wire MISC = (opA == 2'b00);
 wire JP = (opA == 2'b01);
 wire LOAD = (opA == 2'b10);
 wire ALU = (opA == 2'b11);

 wire CALL = (opB == 2'b00);
 wire GOTO = (opB == 2'b01);
 wire RETS = (opB == 2'b10);
 wire MOVOUT = (opB == 2'b11);

 wire RET = (opC == 2'b00);
 wire RETI = (opC == 2'b01);
 wire DI = (opC == 2'b10);
 wire EI = (opC == 2'b11);

 wire FLAG_Z = (opB == 2'b00);
 wire FLAG_NZ = (opB == 2'b01);
 wire FLAG_C = (opB == 2'b10);
 wire FLAG_NC = (opB == 2'b11);

 wire LOGIC = (opB == 2'b00);
 wire ARITH = (opB == 2'b01);
 wire SHIFT = (opB == 2'b10);
 wire MOVIN = (opB == 2'b11);

 wire MOV = (opC == 2'b00);
 wire XNOR = (opC == 2'b01);
 wire OR = (opC == 2'b10);
 wire AND = (opC == 2'b11);

 wire ADD = (opC == 2'b00);
 wire ADC = (opC == 2'b01);
 wire SUB = (opC == 2'b10);
 wire SBC = (opC == 2'b11);

 wire ASR = (opC == 2'b00);
 wire RRC = (opC == 2'b01);
 wire ROR = (opC == 2'b10);
 wire ROL = (opC == 2'b11);

 wire IND = (opC == 2'b00);
 wire SEQ = (opC == 2'b01);
 wire DIR = (opC >= 2'b10);

After these definitions, at least several general
resources must be introduced: two DFF used by flags, an
8-bit bus used to collect the results of all operations, and
the 12-bit output of the internal stack used to store
returning addresses of subroutines and flags during
interrupts. They will be referred before their
implementation.

 // General Resources:
 reg zeroFlag, carryFlag; // DFFs used by flags
 wire [7:0] dataBus; // Data bus for all operations
 wire [2+9:0] stackValue; // Internal stack output

Now we can begin with the design of several units

that compose the processor. The first one is the register
file, a dual-port memory [7] used to store the 8-bit values
of ‘r0’ to ‘r15’ registers. It allows two asynchronous
reads at the beginning of each clock cycle and one
synchronous write at the end of it.

 // Register file (r0-r15) and operand buses:
 reg [7:0] registerFile[0:15]; // 16x8 dual-port memory
 always@(posedge clk)
 begin
 if (LOAD | ALU)
 registerFile[rN] <= dataBus; // Synchronous write
 end
 wire [7:0] busN = registerFile[rN]; // Async. read of rN
 wire [7:0] busM = registerFile[rM]; // Async. read of rM

The data interface is very easy because all accesses

are synchronous and they are executed in just one clock
cycle. The address signal ‘portAddress’ chooses between
the direct port given by the instruction code, the indirect
value given by a register, or the last address used
incremented by one. Read and write signals are simply
decoded from the instruction code and the output data
always comes from a register.

 // Port signals for direct, indirect and sequential accesses:
 reg [7:0] nextPort;
 always@(posedge clk)
 begin
 if (portRead | portWrite)
 nextPort <= portAddress + 1; // For sequential use
 end
 assign dataOut = busN; // Output from rN
 assign portRead = ALU & MOVIN; // Read signal
 assign portWrite = MISC & MOVOUT; // Write signal
 assign portAddress = IND ? busM : // Indirect
 SEQ ? nextPort : // Sequent.
 {3'b111,immPort}; // Direct

The ALU for logic operations computes all its

functions and then selects the needed result. The carry of
this unit has a special meaning: it will be ‘1’ for any

‘and’ operation and ‘0’ for any ‘or’ one, so ‘setC’ and
‘clrC’ functions (that set and clear the carry flag) are
implemented as macros with no additional cost. Carry
flag will be kept constant on all register movements to
allow several macros. The whole unit can be synthesized
using only eight LUT4 and one LUT3.

 // Logic ALU: AND, OR, XNOR and MOV.
 wire logicCarry = AND ? 1'b1 : OR ? 1'b0 : carryFlag;
 wire [7:0] logicALU = AND ? busN & busM :
 OR ? busN | busM :
 XNOR ? busN ~^ busM :
 busM ;

The full adder/subtracter for arithmetic operations

implements its four operations using a single chain of
LUTs.

 // Arithmetic ALU: ADD, ADC, SUB and SBC.
 wire [7:0] arithALU, altM;
 wire arithCarry, x, y, z;
 assign x = ADD ? 1'b0 : ADC ? carryFlag :
 SUB ? 1'b1 : ~carryFlag;
 assign altM = (SUB | SBC) ? ~busM : busM;
 assign {z, arithALU, y} = {busN, 1'b1} + {altM, x};
 assign arithCarry = (SUB | SBC) ? ~z : z;

The shifter ALU is very similar to the logic one. Only

‘asr’ and ‘rrc’ operations are required, because other
shifts and rotations can be replaced through macros, but
‘ror’ and ‘rol’ bit rotations are also included.

 // Shifter: ASR, RRC, ROR and ROL.
 wire [7:0] shiftALU;
 wire shiftCarry;
 assign {shiftALU, shiftCarry} =
 ASR ? {busN[7], busN} :
 RRC ? {carryFlag, busN} :
 ROR ? {busN[0], busN} :
 {busN[6:0], busN[7], busN[7]};

Finally all possible results are collected in a tristate

bus. It consumes no additional resources and its delay is
meaningless in comparison with a full multiplexer.

 // This data bus collects results from all sources:
 assign dataBus = (LOAD | MISC) ? immData : 8'bz;
 assign dataBus = (ALU | JP) & LOGIC ? logicALU : 8'bz;
 assign dataBus = (ALU | JP) & ARITH ? arithALU : 8'bz;
 assign dataBus = (ALU | JP) & SHIFT ? shiftALU : 8'bz;
 assign dataBus = (ALU | JP) & MOVIN ? dataIn : 8'bz;

The control part of this processor may begin with the

interrupt controller, who has three DFFs: ‘userEI’ allows
user to enable or disable interrupts; ‘intAck’ is an output
than acknowledges the interrupt; and ‘callingIRQ’ is

used, with ‘validIRQ’, to coordinate the processor
response when an IRQ is attended. Several instructions,
those excluded by ‘mayIRQ’, are preserved from being
interrupted: ‘di’, ‘ei’ and ‘reti’ for a clean work and all
external accesses to allow sequential mode and, if
wanted, wait states (not included in this design).

 // Interrupt Controller:
 reg userEI, callingIRQ, intAck;
 wire mayIRQ = ! (MISC & RETS
 | MISC & MOVOUT
 | ALU & MOVIN);
 wire validIRQ = intReq & ~intAck & userEI & mayIRQ;
 wire [9:0] destIRQ = callingIRQ ? 10'h001 : 10'h000;
 always@(posedge clk or posedge reset)
 begin
 if (reset) userEI <= 0;
 else if (MISC & RETS & DI) userEI <= 0;
 else if (MISC & RETS & EI) userEI <= 1;

 if (reset) intAck <= 0;
 else if (validIRQ) intAck <= 1;
 else if (MISC & RETS & RETI) intAck <= 0;

 if (reset) callingIRQ <= 0;
 else callingIRQ <= validIRQ;
 end

Following we describe two DFFs to store flags (‘Z’

and ‘C’), that are updated only when needed. This is an
important feature that allows lots of macros and extends
flag use possibilities.

 // Flag DFFs:
 always@(posedge clk)
 begin
 if (MISC & RETS & RETI) // Flags recovery when ‘reti’
 {carryFlag,zeroFlag} <= stackValue[11:10];
 else begin
 if (LOAD | ALU) // 'Z' changes with registers
 zeroFlag <= (dataBus == 8'h00);
 if (ALU & ~MOVIN) // but 'C' only with ALU ops
 carryFlag <= LOGIC ? logicCarry :
 SHIFT ? shiftCarry :
 arithCarry ;
 end
 end

 // 'validFlag' evaluates one of four conditions for jumps.
 wire validFlag = FLAG_Z ? zeroFlag :
 FLAG_NZ ? ~zeroFlag :
 FLAG_C ? carryFlag :
 ~carryFlag ;

The “Program Counter” of this processor, in order to

make it simpler, has only three functions: it can load a
new immediate address on jumps, load a returning
address when subroutines end, or increment itself
otherwise. When this processor is connected to a

synchronous reading program memory, like Xilinx
BlockRAM, the ‘progAddress’ signal must be connected
to ‘nextPC’ rather than ‘PC’, because of the registered
nature of the program memory data output. Additionally,
the synchronous ‘RST’ signal must be controlled to get a
‘call 0x0000’ instruction (codified as 0x0000) at reset
time and a ‘call 0x0001’ when interrupts are
acknowledged. Thanks to Jan Gray [5] for this idea.

 // Program Counter (PC): the address of current instruction.
 reg [9:0] PC;
 wire [9:0] nextPC, incrPC;
 wire onRet = MISC & RETS & (RETN | RETI);
 wire onJump = MISC & (GOTO | CALL) | JP & validFlag;
 assign incrPC = PC + (callingIRQ ? 0 : 1);
 assign nextPC = onRet ? stackValue[9:0] : 10'bz;
 assign nextPC = onJump ? immAddr | destIRQ : 10'bz;
 assign nextPC = !(onRet | onJump) ? incrPC : 10'bz;
 always@(posedge clk)
 begin
 PC <= nextPC;
 end

 // When using Xilinx BlockRAM as program memory:
 assign progAddress = nextPC;
 assign progReset = reset | validIRQ;

To implement the last feature of this processor, an

internal stack for returning addresses and flags, we use a
single-port distributed 16x12 memory and a pointer.

 // Internal stack for returning addresses (16 levels):
 reg [3:0] SP; // Stack Pointer register
 always@(posedge clk or posedge reset)
 begin
 if (reset) SP <= 0;
 else if (MISC & CALL) SP <= SP + 1;
 else if (MISC & RETS & (RETN|RETI)) SP <= SP – 1;
 end
 wire [3:0] mySP = (CALL | GOTO) ? SP : SP – 1;

 reg [2+9:0] stackMem[0:15]; // Stack 16x12 memory
 always@(posedge clk)
 begin
 if (MISC & CALL) // Keep returning address and flags
 stackMem [mySP] <= {carryFlag, zeroFlag, incrPC};
 end
 assign stackValue = stackMem[mySP];

At last we reach the end of this small module, with

about 120 Verilog sentences. It uses 148 LUT45 and 70
TBUF when compiled for speed.

endmodule /// RISCuva1 (all in one file!)

5 The implementation result on a XC2S300E was 84 slices, less than

3% of the device. PicoBlaze uses 154 logic cells as can be seen on
Xilinx Press Release #0270.

5. Programming example

An integrated development environment (IDE, see
figure 2) with a ‘C’-like assembler6, a simulator and
emulator has been developed for this processor. The
RISCuva1 capabilities can be observed in the following
programming example.

/*
 Demonstration program of RISCuva1 for FPGAworld'2006
 2006/05/27 Santiago de Pablo (sanpab@eis.uva.es)
*/

#include “uva1std.h” // Several common definitions

#device LIFO16 255 // An external data stack at port 255
#define DISPLAY 224 // Four 7-seg displays at 224 and 225

PROGRAM: // Defined to begin at 0x0000
 goto Main // Jump to main program
IRQ: // Defined to begin at 0x0001
 push r2 // Keep r2 at IRQ when using macros
 inc r15:r14 // Increments the 16-bit counter
 mov (DISPLAY),r14; mov (++),r15 // Displays its value
 pop r2 // Recovery of r2
 reti // Exit the interrupt recovering ‘flags’

Main:
 mov r0,0; mov r1,1 // User must lock them to 0 and 1

 clr r15:r14 // Resets a counter used on IRQ
 ei // Enable interrupts

 mov r3, Source // Address the original text
 mov r4, Destiny // Address the space for the copy
StrCpy: // Copy a string from (r3) to (r4)
 mov (r4),(r3) // Copy one char of the string
 jpZ Continue // Ends the string copy with ‘\0’
 inc r3; inc r4 // Update both pointers
 goto StrCpy // Repeat until end of string
Continue:
 nop // Yes, there are ‘nop’ instructions
 break // ... and also breakpoints.
 /* Anything more to do? */
 halt // Stops the processor at the end.
 // This state implies a “low power mode” where ...
 // ... processor do nothing except interrupt attention.

PORTS: // Defined to allow port initialization
Source: text “RISCuva1 rules!\0” // 32x8 RAM from port 0
Destiny: space 16 // Reserved for a copy
PORT224: null 2 // Ports 224 and 255 are connected
 // ... to four 7-seg displays.

This program begins with three declarations after a

multi-line comment: it includes several common
definitions from a file, instantiates a 16-level LIFO stack
for the simulator at port 255 and defines the ‘DISPLAY’
string to address four seven-segment displays that are

6 A ‘C’ compiler for fixed point values is under work.

attached to ports 224 and 225. The external data stack
allows ‘push’ and ‘pop’ macroinstructions.

User programs begin at 0x0000 address. The
‘PROGRAM’ string, defined at “uva1std.h” file as
‘0x0000’, is used as an absolute label to prepare the
assembler for programs. Other similar strings are ‘IRQ’
(assigned to 0x0001), ‘PORTS’ (assigned to 0x4000, the
assembler knows what to do), ‘PORT224’ (assigned to
0x40E0), etc.

This small demonstration program has a main
program (beginning at the relative label ‘Main:’) who
copies a string located on data memory using ports to
access it. A small interrupt subroutine has also been
included (at ‘IRQ:’) which increments and displays a 16-
bit counter. Multi-byte macros and one sequential access
are used in this program to show the processor-plus-
assembler low level possibilities.

Figure 2. An image of the IDE of this processor.

6. Conclusions

This article has presented a small and easy to
understand processor developed using Verilog for
FPGA. It is very similar in size and features to
picoBlaze, but it improves its possibilities. It would be a
good starting point for students who need to know how
processors work and for those engineers who wish to
design their own processor.

It executes all the instructions in one clock cycle,
including jumps, returns from subroutines and external
accesses. A sequential access to ports has also been
included for compilers who make an intensive use of

multi-byte data. The assembler of this processor is full of
macros that extend the native instruction set to facilitate
low level programming.

7. Acknowledgments

The authors would like to acknowledge the financial
support of the Junta de Castilla y Leon under grants
VA004B06 and VA021B06. Our thanks also to those
students of our University who work hard and contribute
to develop this processor and others, their Integrated
Development Environments and their peripherals.

References

[1] R. Aceves, Desarrollo de un enlace inalámbrico para
telefonía fija empleando una FPGA. Final Project at the
ETSII, University of Valladolid, Spain, 2006.

[2] M. Alonso, Diseño de un Entorno de Desarrollo de Alto
y Bajo Nivel para un Procesador de Propósito General
integrado en FPGA, Final Project at the ETSII,
University of Valladolid, Spain, 2003.

[3] J. del Barrio, Desarrollo sobre FPGA de un Emulador de
una Planta de Microgeneración Eléctrica, Final Project
at the ETSII, University of Valladolid, Spain, 2004.

[4] K. Chapman, “PicoBlaze 8-Bit Microcontroller for
Virtex-E and Spartan-II/IIE Devices”, Xilinx XAPP213
(v2.0), online at http://www.xilinx.com/xapp/xapp213
.pdf, December, 2002.

[5] J. Gray, “Designing a Simple FPGA-Optimized RISC
CPU and System-on-a-Chip”, DesignCon’2001, online at
http://www.fpgacpu.org/gr/index.html, 2001.

[6] J. Gray, “FPGA CPU Links”, on line at http://www.
fpgacpu.org/links.html, September, 2002.

[7] S. K. Knapp, “XC4000 Series Edge-Triggered and Dual-
Port RAM Capability”, Xilinx XAPP065, 1996.

[8] J. Kent, “John’s FPGA Page”, online at http://members.
optushome.com.au/jekent/FPGA.htm, January, 2002.

[9] G. Moore, “Cramming more components onto integrated
circuits”, Electronics Magazine, 19 April, 1965.

[10] Opencores: http://www.opencores.org/.
[11] S. de Pablo et al., “A soft fixed-point Digital Signal

Processor applied in Power Electronics”, FPGAworld
Conference 2005, Stockholm, Sweden, 2005.

[12] I. Rodríguez, Desarrollo en FPGA de un interfaz USB
con un ordenador personal, Final Project at the ETSII,
University of Valladolid, Spain, 2005.

