
A very simple 8-bit RISC processor for FPGA 

S. de Pablo, J.A. Cebrián, L.C. Herrero 
University of Valladolid 

E.T.S.I.I., Paseo del Cauce, s/n 
47011 Valladolid (Spain) 

sanpab@eis.uva.es 
 

 A.B. Rey 
Polytechnic University of Cartagena 

Ant. Cuartel de Antiguones (C. de la Muralla) 
30202 Cartagena, Murcia (Spain) 

alexis.rey@upct.es 

 
 

Abstract 

This article presents the “RISCuva1” processor, a 
very simple 8-bit RISC processor for FPGA. Its most 
important feature is that this processor is very simple. Its 
Verilog code has about 120 sentences, and most of them 
are easy to understand. It would be a good starting point 
for students who need to know how processors work and 
for those engineers who wish to design their own 
processor. The proposed processor has been physically 
tested on Xilinx SpartanIIe FPGAs with a performance 
of 40 MIPS in -6C grade devices. 

 

1. Introduction 

Over the past 40 years, it seems that Moore’s Law [9] 
has been true: from 50 transistors per chip we have 
reached to more than 50 million transistors, doubling 
every two years. We may think, why not, that in the near 
future the number of processors per chip would also 
duplicate every two years. Most personal computers 
have nowadays two processor cores on a chip. Several 
student works at the University of Valladolid (Spain) are 
also in that trend: first we synthesize on a Xilinx FPGA a 
third party processor [2], then we run three DSP 
processors to control a photovoltaic system [3][11] and 
now we have implemented six small general-purpose 
processors for an audio-RF application [1]. 

This paper presents a very simple 8-bit general 
purpose processor for FPGA called “RISCuva1”. Its 
small Verilog code demonstrates that it is very easy to 
design a simple core with processing capabilities. The 
processor size, performance and external interface are 
similar to Xilinx picoBlaze, created by Ken Chapman 
[4], but this one can execute bigger programs. Its internal 
architecture has been inspired in Jan Gray’s GR0000 [5]. 
More FPGA processors can be found at [6][8][10]. 

2. Main features of the RISCuva1 

The RISCuva1 is an 8-bit general-purpose RISC 
processor with Harvard architecture: it gets instructions 
on a regular basis using dedicated buses to its program 
memory, executes all its native instructions in just one 
clock cycle and exchanges data with several devices 
using other buses. It allows one source of interrupts. 

 

Figure 1. Processor external connections. 

This processor can execute programs with up to 1024 
instructions (the equivalent picoBlaze is limited to a 
quarter of it) and it exchanges data through 256 ports, all 
of them with indirect access and 32 of them –from 224 
to 255– also with direct access. The later are more 
intended for specific devices, such as an external stack 
for data o several seven-segment displays. In addition, it 
has special instructions to access external ports in 
sequential mode, a great feature for compilers who 
continuously access to multi-byte data. 

Internally it has sixteen 8-bit general purpose registers 
that can be used in all operations. It includes twelve 
native operations (arithmetic, logic and bit rotation), but 
it also execute others as “macros” (see tables 2 and 3). 

To make decisions it uses only two flags, ‘Zero’ and 
‘Carry’, that are enough for most situations. With them it 
can evaluate up to four conditions. It also has 
unconditional jumps (‘goto’), jumps to subroutines 



(‘call’) and return from them (‘ret’ and ‘reti’). Its internal 
stack for returning addresses allows up to 16 nested 
subroutines1. This stack also keeps the value of flags 
during interrupt execution. 

This processor has been synthesized and tested at a 
system frequency of 40 MHz (40 MIPS) on SpartanIIe-
6C devices. Its frequency can be extended up to 85 MHz 
when it is implemented standalone2. 

3. The instruction set 

The instruction set of the RISCuva1 has been 
designed following several rules: 

– All instructions are executed in just one clock 
cycle. Doing so, processor is simpler, smaller, 
faster and easier to understand. 

– The instruction code is received at the beginning of 
each cycle, all operations are executed during the 
clock period, and results are stored at the end of it. 

– ALU operations take two operands from registers 
and store the result in one of them. 

– No hardware nor binary codes have been used for 
several instructions (‘inc’, ‘nop’, …) that can be 
executed using other instructions (an ‘add’ may 
replace an ‘inc’, an so on). 

– External read and write operations are synchronous. 
The result, as shown in table 1, is very simple. It 

consists of 29 different instructions, but it can execute a 
lot of macros with them. 

 

Table 1. RISCuva1 instruction set. 

Opcode Mnemonic Operation 

00 00dd dddd dddd call  <dest> Call to subroutine 

00 01dd dddd dddd goto <dest> Unconditional jump 

00 1000 •••• •••• ret Subroutine return 

00 1001 •••• •••• reti Interrupt return 

00 1010 •••• •••• di Disable interrupts 

00 1011 •••• •••• ei Enable interrupts 

00 1100 mmmm nnnn mov (rM),rN Write to indirect port 

00 1101 •••• nnnn mov (++),rN Write to next port 

00 111k kkkk nnnn mov (<k>),rN Write to direct port 

01 00dd dddd dddd jpZ    <dest> Jump if Z == 1 

01 01dd dddd dddd jpNZ <dest> Jump if Z == 0 

01 10dd dddd dddd jpC   <dest> Jump if C == 1 

01 11dd dddd dddd jpNC <dest> Jump if C == 0 

10 kkkk kkkk nnnn mov rN,<k> rN = <k> 

                                                           
1 It is very easy to increment the stack to 32 levels or even more. 
2 The processor core can be compiled at 85 MHz on -6 devices, but 

its performance decreases to 40 MHz when it is connected to a 
BlockRAM program memory and other peripherals. 

11 0000 mmmm nnnn mov rN,rM rN = rM 

11 0001 mmmm nnnn xnor rN,rM rN = rN xnor rM 

11 0010 mmmm nnnn or     rN,rM rN = rN   or   rM 

11 0011 mmmm nnnn and  rN,rM rN = rN and  rM 

11 0100 mmmm nnnn add  rN,rM rN = rN + rM 

11 0101 mmmm nnnn adc  rN,rM rN = rN + rM + C 

11 0110 mmmm nnnn sub  rN,rM rN = rN – rM 

11 0111 mmmm nnnn sbc  rN,rM rN = rN – rM – C 

11 1000 •••• nnnn asr  rN Arithmetic shift 

11 1001 •••• nnnn rrc   rN Rotate through carry 

11 1010 •••• nnnn ror   rN Rotate right 

11 1011 •••• nnnn rol   rN Rotate left 

11 1100 mmmm nnnn mov rN,(rM) Read on indirect port 

11 1101 •••• nnnn mov rN,(++) Read on next port 

11 111k kkkk nnnn mov rN,(<k>) Read on direct port 

 
Flag ‘Z’ is affected by all ‘1x xxxx’ operations (those 

who change a register) and flag ‘C’ changes only when 
‘10 00xx’, ‘10 01xx’ or ‘10 10xx’ instructions (ALU 
operations) are used. 

All jumps use only 10 bits to address their 
destination, so programs are limited to 1024 instructions. 
This length would be more than enough for most 
applications, such as USB controllers [12] and others. 
Anyway, it is four times more than classic picoBlaze [4], 
and it can be extended in the same way. 

External data access is quite good: its indirect 
addressing allows the processor to manage variables and 
lists on data memory and its direct addressing provides 
easy access to peripherals. Additionally, a sequential 
access improves multi-byte data manipulation, a nice 
feature for compilers3. 

Anyway, this instruction set seems to be very poor: it 
has no direct increment nor decrement instructions, a 
‘nop’ instruction cannot be found, and it would be nice 
to find others like ‘push’, ‘pop’, etc. To solve all these 
deficiencies, a basic macro set has been included in the 
assembler program, as shown in table 2: it replaces 
several instruction-like constructions by one or more 
processor native instructions who work in the same way, 
including the effect on flags. But if programmers want to 
use them, they must follow several conventions: 
registers ‘r0’ and ‘r1’ must be locked at ‘0x00’ and 
‘0x01’ from the beginning of all programs, and register 
‘r2’ must not be used (mainly for advanced macro set, 
see table 3). 

 
 

                                                           
3 When compilers manage multi-byte variables (‘int’, for example) 

they need one indexed access –included here as a macro– to the 
first byte, and then other accesses to sequential addresses. 



Table 2. RISCuva1 basic macro set. 

Macro Equivalent Operation 

nop mov r0,r0 Do nothing (keep Carry) 

inc  rN add rN,r1 rN = rN + 1 (r1 = 1!) 

dec rN sub rN,r1 rN = rN – 1 (r1 = 1!) 

not  rN xnor rN,r0 Bit inversion (r0 = 0!) 

neg rN not rN; inc rN rN = –rN 

xor  rN,rM xnor rN,rM; not rN rN = rN xor rM 

cmp rN,rM mov r2,rN; sub r2,rM Compare two registers 

setC and r0,r0 Set the Carry flag 

clrC or r0,r0 Clear the Carry flag 

rlc  rN adc rN,rN Rotate left through carry 

sl0 rN add rN,rN Shift left adding ‘zero’ 

sl1 rN setC; rlc rN Shift left adding ‘one’ 

sr0 rN clrC; rrc rN Shift right adding ‘zero’ 

sr1 rN setC; rrc rN Shift right adding ‘one’ 

push rN mov (255),rN Send value to data stack 

pop  rN mov rN,(255) Get from data stack 

break Not documented Simulator break-point 

halt goto <PC> Stop the processor 

 
The main advantage of not including these 

instructions in the processor hardware is that the result is 
simpler, so smaller and faster. The instruction decoder 
will implement logic functions with less inputs, an 
important feature when an FPGA is the main target of 
this design. 

 

Table 3. RISCuva1 advanced macro set. 

Macro Equivalent Operation 

and rN,<k> mov r2,<k>; and rN,r2 AND with constant 

or    rN,<k> mov r2,<k>; or  rN,r2 OR with constant 

xor  rN,<k> mov r2,<k>; xor rN,r2 XOR with constant 

add rN,<k> mov r2,<k>; add rN,r2 ADD with constant 

adc rN,<k> mov r2,<k>; adc rN,r2 ADC with constant 

sub rN,<k> mov r2,<k>; sub rN,r2 SUB with constant 

sbc rN,<k> mov r2,<k>; sbc rN,r2 SBC with constant 

clr rN mov rN,0 Clear a register 

clr rN":rN':rN clr rN; clr rN'; clr rN" 
Clear multi-byte 
value 

not rN":rN':rN not rN; not rN'; not rN" 
Invert multi-byte 
value 

inc  rN":rN':rN 
add rN,r1; adc rN',r0; 
adc rN",r0 

Increment multi-
byte value 

dec rN":rN':rN 
sub rN,r1; sbc rN',r0; 
sbc rN",r0 

Decrement multi-
byte value 

mov (rM),(rN) 
mov r2,(rN); 
mov (rM),r2 

Move between 
ports 

mov rN,(<k> + rM)
mov r2,<k>; add 
r2,rM; mov rN,(r2) 

Indexed read 
access 

mov rN,(<k> – rM)
mov r2,<k>; sub 
r2,rM; mov rN,(r2) 

Indexed read 
access 

mov (<k> + rM),rN
mov r2,<k>; add 
r2,rM; mov (r2),rN 

Indexed write 
access 

mov (<k> – rM),rN
mov r2,<k>; sub 
r2,rM; mov (r2),rN 

Indexed write 
access 

 
These advanced macros, and others not shown in 

these tables, are included to ease programmers work. 

4. Verilog source code 

The internal architecture of this processor is RISC 
like. It executes all of its native instructions regularly, in 
just one clock cycle. Soon after the rising edge of the 
clock signal, a 14-bit instruction code is received from 
the program memory; these bits are decoded in order to 
execute all duties involved by the instruction; when the 
following rising edge arrives, all processor parts are 
prepared to update to newer values, and the address of 
the following instruction has been sent to the program 
memory to receive a new instruction code. 

The Verilog code of this processor begins, as usual, 
with a declaration of its ports. It uses a ‘clk’ signal for 
synchronization and an active high ‘reset’. This 
processor is connected to a private program memory 
through three signals: it sends the address of the 
following instruction using ‘progAddress’; on the rising 
edge of the next clock cycle it receives the 14-bit code of 
the current instruction on ‘progData’. This processor also 
sends a ‘progReset’ signal to clear the ‘progData’ value 
received from the program memory in order to reset or 
interrupt the processor4. 

 
module RISCuva1 ( clk, reset, 
    progAddress, progData, progReset, 
    dataIn, dataOut, 
    portAddress, portRead, portWrite, 
    intReq, intAck ); 
 
 // Inputs and outputs: 
 input  clk, reset; // Clock and Reset 
 
 output   [9:0] progAddress; // Up to 1K instructions (10 bits) 
 input   [13:0] progData; // Current instruction code 
 output  progReset; // Reset of Program Memory 
 
 input     [7:0] dataIn; // Data input (from an I/O port) 
 output   [7:0] dataOut; // Data output (through a port) 
 
 output   [7:0] portAddress; // Addressed I/O Port (0..255) 
 output  portRead; // Read signal 
 output  portWrite; // Write signal 

                                                           
4 This technique was first used by Jan Gray [5]: a RST signal clears 

the data output of program memory when Xilinx BlockRAM are 
used, and then processor executes a ‘call 0’ (0x0000) instruction. 



 
 input  intReq; // Interrupt request 
 output  intAck; // Interrupt Acknowledge 

 
Now we must decode the instruction code we receive 

from program memory: all instructions are executed in 
one clock cycle and each bit or group of bits has a 
meaning for it. 

 
 // Instruction decoding from the instruction code: 
 wire [13:0]  opCode = progData; // Instruction code 
 
 wire   [1:0]  opA  = opCode[13:12]; // 1st operation code 
 wire   [1:0]  opB  = opCode[11:10]; // 2nd operation code 
 wire   [1:0]  opC  = opCode[  9:  8]; // 3rd operation code 
 wire   [3:0]  rM  = opCode[  7:  4]; // Source register 
 wire   [3:0]  rN  = opCode[  3:  0]; // Destination register 
 
 wire   [9:0]  immAddr = opCode[  9:0];   // Address for jumps 
 wire   [7:0]  immData = opCode[11:4];   // Immediate data 
 wire   [4:0]  immPort  = opCode[  8:4];   // For direct access 
 
 wire MISC  =  (opA == 2'b00); 
 wire JP   =  (opA == 2'b01); 
 wire LOAD  =  (opA == 2'b10); 
 wire ALU  =  (opA == 2'b11); 
 
 wire CALL  =  (opB == 2'b00); 
 wire GOTO  =  (opB == 2'b01); 
 wire RETS  =  (opB == 2'b10); 
 wire MOVOUT =  (opB == 2'b11); 
 
 wire RET  =  (opC == 2'b00); 
 wire RETI  =  (opC == 2'b01); 
 wire DI   =  (opC == 2'b10); 
 wire EI   =  (opC == 2'b11); 
 
 wire FLAG_Z =  (opB == 2'b00); 
 wire FLAG_NZ =  (opB == 2'b01); 
 wire FLAG_C =  (opB == 2'b10); 
 wire FLAG_NC =  (opB == 2'b11); 
 
 wire LOGIC  =  (opB == 2'b00); 
 wire ARITH  =  (opB == 2'b01); 
 wire SHIFT  =  (opB == 2'b10); 
 wire MOVIN  =  (opB == 2'b11); 
 
 wire MOV  =  (opC == 2'b00); 
 wire XNOR  =  (opC == 2'b01); 
 wire OR   =  (opC == 2'b10); 
 wire AND  =  (opC == 2'b11); 
 
 wire ADD  =  (opC == 2'b00); 
 wire ADC  =  (opC == 2'b01); 
 wire SUB  =  (opC == 2'b10); 
 wire SBC  =  (opC == 2'b11); 
 
 wire ASR  =  (opC == 2'b00); 
 wire RRC  =  (opC == 2'b01); 
 wire ROR  =  (opC == 2'b10); 
 wire ROL  =  (opC == 2'b11); 
 
 wire IND   =  (opC == 2'b00); 
 wire SEQ  =  (opC == 2'b01); 
 wire DIR   =  (opC >= 2'b10); 

After these definitions, at least several general 
resources must be introduced: two DFF used by flags, an 
8-bit bus used to collect the results of all operations, and 
the 12-bit output of the internal stack used to store 
returning addresses of subroutines and flags during 
interrupts. They will be referred before their 
implementation. 

 
 // General Resources: 
 reg    zeroFlag, carryFlag; // DFFs used by flags 
 wire      [7:0] dataBus;       // Data bus for all operations 
 wire  [2+9:0] stackValue;       // Internal stack output 

 
Now we can begin with the design of several units 

that compose the processor. The first one is the register 
file, a dual-port memory [7] used to store the 8-bit values 
of ‘r0’ to ‘r15’ registers. It allows two asynchronous 
reads at the beginning of each clock cycle and one 
synchronous write at the end of it. 

 
 // Register file (r0-r15) and operand buses: 
 reg  [7:0]  registerFile[0:15];  // 16x8 dual-port memory 
 always@(posedge clk) 
 begin 
  if (LOAD | ALU) 
   registerFile[rN] <= dataBus; // Synchronous write 
 end 
 wire [7:0]  busN = registerFile[rN]; // Async. read of rN 
 wire [7:0]  busM = registerFile[rM]; // Async. read of rM 

 
The data interface is very easy because all accesses 

are synchronous and they are executed in just one clock 
cycle. The address signal ‘portAddress’ chooses between 
the direct port given by the instruction code, the indirect 
value given by a register, or the last address used 
incremented by one. Read and write signals are simply 
decoded from the instruction code and the output data 
always comes from a register. 

 
 // Port signals for direct, indirect and sequential accesses: 
 reg [7:0] nextPort; 
 always@(posedge clk) 
 begin 
  if (portRead | portWrite) 
   nextPort <= portAddress + 1;   // For sequential use 
 end 
 assign dataOut  = busN;         // Output from rN 
 assign portRead = ALU  &  MOVIN;      // Read signal 
 assign portWrite = MISC & MOVOUT;   // Write signal 
 assign portAddress = IND  ? busM :   // Indirect 
         SEQ ? nextPort :   // Sequent. 
                         {3'b111,immPort}; // Direct 

 
The ALU for logic operations computes all its 

functions and then selects the needed result. The carry of 
this unit has a special meaning: it will be ‘1’ for any 



‘and’ operation and ‘0’ for any ‘or’ one, so ‘setC’ and 
‘clrC’ functions (that set and clear the carry flag) are 
implemented as macros with no additional cost. Carry 
flag will be kept constant on all register movements to 
allow several macros. The whole unit can be synthesized 
using only eight LUT4 and one LUT3. 

 
 // Logic ALU: AND, OR, XNOR and MOV. 
 wire           logicCarry = AND ? 1'b1 : OR ? 1'b0 : carryFlag; 
 wire  [7:0]  logicALU   =  AND    ? busN  & busM : 
             OR      ? busN   |  busM : 
             XNOR ? busN ~^ busM : 
                                                                    busM ; 

 
The full adder/subtracter for arithmetic operations 

implements its four operations using a single chain of 
LUTs. 

 
 // Arithmetic ALU: ADD, ADC, SUB and SBC. 
 wire  [7:0]  arithALU, altM; 
 wire           arithCarry, x, y, z; 
 assign x = ADD ? 1'b0 : ADC ? carryFlag : 
                    SUB ? 1'b1 : ~carryFlag; 
 assign altM                   = (SUB | SBC) ? ~busM : busM; 
 assign {z, arithALU, y} = {busN, 1'b1} + {altM, x}; 
 assign arithCarry  = (SUB | SBC) ? ~z : z; 

 
The shifter ALU is very similar to the logic one. Only 

‘asr’ and ‘rrc’ operations are required, because other 
shifts and rotations can be replaced through macros, but 
‘ror’ and ‘rol’ bit rotations are also included. 

 
 // Shifter: ASR, RRC, ROR and ROL. 
 wire [7:0]  shiftALU; 
 wire          shiftCarry; 
 assign {shiftALU, shiftCarry} = 
      ASR ? {busN[7],    busN} : 
      RRC ? {carryFlag, busN} : 
      ROR ? {busN[0],    busN} : 
             {busN[6:0], busN[7], busN[7]}; 

 
Finally all possible results are collected in a tristate 

bus. It consumes no additional resources and its delay is 
meaningless in comparison with a full multiplexer. 

 
 // This data bus collects results from all sources: 
 assign dataBus = (LOAD | MISC)          ? immData : 8'bz; 
 assign dataBus = (ALU | JP) & LOGIC  ? logicALU : 8'bz; 
 assign dataBus = (ALU | JP) & ARITH   ? arithALU : 8'bz; 
 assign dataBus = (ALU | JP) & SHIFT   ? shiftALU : 8'bz; 
 assign dataBus = (ALU | JP) & MOVIN  ? dataIn  : 8'bz; 

 
The control part of this processor may begin with the 

interrupt controller, who has three DFFs: ‘userEI’ allows 
user to enable or disable interrupts; ‘intAck’ is an output 
than acknowledges the interrupt; and ‘callingIRQ’ is 

used, with ‘validIRQ’, to coordinate the processor 
response when an IRQ is attended. Several instructions, 
those excluded by ‘mayIRQ’, are preserved from being 
interrupted: ‘di’, ‘ei’ and ‘reti’ for a clean work and all 
external accesses to allow sequential mode and, if 
wanted, wait states (not included in this design). 

 
 // Interrupt Controller: 
 reg      userEI, callingIRQ, intAck; 
 wire     mayIRQ = ! (MISC & RETS 
                                    | MISC & MOVOUT 
                                    | ALU  &  MOVIN); 
 wire     validIRQ = intReq & ~intAck & userEI & mayIRQ; 
 wire [9:0]  destIRQ = callingIRQ ? 10'h001 : 10'h000; 
 always@(posedge clk or posedge reset) 
 begin 
  if (reset)      userEI <= 0; 
  else if (MISC & RETS & DI) userEI <= 0; 
  else if (MISC & RETS & EI) userEI <= 1;  
 
  if (reset)      intAck <= 0; 
  else if (validIRQ)    intAck <= 1; 
  else if (MISC & RETS & RETI) intAck <= 0; 
 
  if (reset)      callingIRQ <= 0; 
  else       callingIRQ <= validIRQ; 
 end 

 
Following we describe two DFFs to store flags (‘Z’ 

and ‘C’), that are updated only when needed. This is an 
important feature that allows lots of macros and extends 
flag use possibilities. 

 
 // Flag DFFs: 
 always@(posedge clk) 
 begin 
  if (MISC & RETS & RETI)   // Flags recovery when ‘reti’ 
   {carryFlag,zeroFlag} <= stackValue[11:10]; 
  else begin 
   if (LOAD | ALU)      // 'Z' changes with registers 
    zeroFlag  <= (dataBus == 8'h00); 
   if (ALU & ~MOVIN)     // but 'C' only with ALU ops 
    carryFlag <= LOGIC ? logicCarry : 
                    SHIFT ? shiftCarry  : 
                             arithCarry ; 
  end 
 end 
 
 // 'validFlag' evaluates one of four conditions for jumps. 
 wire validFlag = FLAG_Z   ?    zeroFlag  : 
                      FLAG_NZ ? ~zeroFlag  : 
                      FLAG_C   ?   carryFlag : 
                    ~carryFlag ; 

 
The “Program Counter” of this processor, in order to 

make it simpler, has only three functions: it can load a 
new immediate address on jumps, load a returning 
address when subroutines end, or increment itself 
otherwise. When this processor is connected to a 



synchronous reading program memory, like Xilinx 
BlockRAM, the ‘progAddress’ signal must be connected 
to ‘nextPC’ rather than ‘PC’, because of the registered 
nature of the program memory data output. Additionally, 
the synchronous ‘RST’ signal must be controlled to get a 
‘call 0x0000’ instruction (codified as 0x0000) at reset 
time and a ‘call 0x0001’ when interrupts are 
acknowledged. Thanks to Jan Gray [5] for this idea. 

 
 // Program Counter (PC): the address of current instruction. 
 reg  [9:0] PC; 
 wire [9:0] nextPC, incrPC; 
 wire onRet    = MISC & RETS & (RETN | RETI); 
 wire onJump = MISC & (GOTO | CALL) | JP & validFlag; 
 assign incrPC = PC + (callingIRQ ? 0 : 1); 
 assign nextPC = onRet    ? stackValue[9:0]       : 10'bz; 
 assign nextPC = onJump ? immAddr | destIRQ : 10'bz; 
 assign nextPC = !(onRet | onJump) ? incrPC     : 10'bz; 
 always@(posedge clk) 
 begin 
  PC <= nextPC; 
 end 
 
 // When using Xilinx BlockRAM as program memory: 
 assign progAddress = nextPC; 
 assign progReset     = reset | validIRQ; 

 
To implement the last feature of this processor, an 

internal stack for returning addresses and flags, we use a 
single-port distributed 16x12 memory and a pointer. 

 
 // Internal stack for returning addresses (16 levels): 
 reg  [3:0]  SP;         // Stack Pointer register 
 always@(posedge clk or posedge reset) 
 begin 
  if (reset)        SP <= 0; 
  else if (MISC & CALL)     SP <= SP + 1; 
  else if (MISC & RETS & (RETN|RETI)) SP <= SP – 1; 
 end 
 wire [3:0]  mySP = (CALL | GOTO) ? SP : SP – 1; 
 
 reg  [2+9:0]  stackMem[0:15];  // Stack 16x12 memory 
 always@(posedge clk) 
 begin 
  if (MISC & CALL) // Keep returning address and flags 
   stackMem [mySP] <= {carryFlag, zeroFlag, incrPC}; 
 end 
 assign stackValue = stackMem[mySP]; 

 
At last we reach the end of this small module, with 

about 120 Verilog sentences. It uses 148 LUT45 and 70 
TBUF when compiled for speed. 

 
endmodule /// RISCuva1 (all in one file!) 

                                                           
5 The implementation result on a XC2S300E was 84 slices, less than 

3% of the device. PicoBlaze uses 154 logic cells as can be seen on 
Xilinx Press Release #0270. 

5. Programming example 

An integrated development environment (IDE, see 
figure 2) with a ‘C’-like assembler6, a simulator and 
emulator has been developed for this processor. The 
RISCuva1 capabilities can be observed in the following 
programming example. 

 
/* 
 Demonstration program of RISCuva1 for FPGAworld'2006 
 2006/05/27    Santiago de Pablo (sanpab@eis.uva.es) 
*/ 
 
#include      “uva1std.h” // Several common definitions 
 
#device  LIFO16 255 // An external data stack at port 255 
#define  DISPLAY 224 // Four 7-seg displays at 224 and 225 
  
PROGRAM:    // Defined to begin at 0x0000 
  goto Main   // Jump to main program 
IRQ:      // Defined to begin at 0x0001 
  push  r2   // Keep r2 at IRQ when using macros 
  inc  r15:r14   // Increments the 16-bit counter 
  mov (DISPLAY),r14; mov (++),r15   // Displays its value 
  pop   r2    // Recovery of r2 
  reti     // Exit the interrupt recovering ‘flags’ 
 
Main: 
  mov r0,0; mov r1,1 // User must lock them to 0 and 1 
 
  clr     r15:r14  // Resets a counter used on IRQ 
  ei     // Enable interrupts 
 
  mov  r3, Source  // Address the original text 
  mov  r4, Destiny // Address the space for the copy 
StrCpy:     // Copy a string from (r3) to (r4) 
  mov  (r4),(r3)  // Copy one char of the string 
  jpZ    Continue  // Ends the string copy with ‘\0’ 
  inc r3;  inc r4  // Update both pointers 
  goto  StrCpy  // Repeat until end of string 
Continue: 
  nop     // Yes, there are ‘nop’ instructions 
  break    // ... and also breakpoints. 
  /*  Anything more to do?  */ 
  halt     // Stops the processor at the end. 
  // This state implies a “low power mode” where ... 
  // ... processor do nothing except interrupt attention. 
 
PORTS:    // Defined to allow port initialization 
Source:   text  “RISCuva1 rules!\0” // 32x8 RAM from port 0 
Destiny:   space 16     // Reserved for a copy 
PORT224:  null  2   // Ports 224 and 255 are connected 
      // ... to four 7-seg displays. 

 
This program begins with three declarations after a 

multi-line comment: it includes several common 
definitions from a file, instantiates a 16-level LIFO stack 
for the simulator at port 255 and defines the ‘DISPLAY’ 
string to address four seven-segment displays that are 

                                                           
6 A ‘C’ compiler for fixed point values is under work. 



attached to ports 224 and 225. The external data stack 
allows ‘push’ and ‘pop’ macroinstructions. 

User programs begin at 0x0000 address. The 
‘PROGRAM’ string, defined at “uva1std.h” file as 
‘0x0000’, is used as an absolute label to prepare the 
assembler for programs. Other similar strings are ‘IRQ’ 
(assigned to 0x0001), ‘PORTS’ (assigned to 0x4000, the 
assembler knows what to do), ‘PORT224’ (assigned to 
0x40E0), etc. 

This small demonstration program has a main 
program (beginning at the relative label ‘Main:’) who 
copies a string located on data memory using ports to 
access it. A small interrupt subroutine has also been 
included (at ‘IRQ:’) which increments and displays a 16-
bit counter. Multi-byte macros and one sequential access 
are used in this program to show the processor-plus-
assembler low level possibilities. 

Figure 2. An image of the IDE of this processor. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

6. Conclusions 

This article has presented a small and easy to 
understand processor developed using Verilog for 
FPGA. It is very similar in size and features to 
picoBlaze, but it improves its possibilities. It would be a 
good starting point for students who need to know how 
processors work and for those engineers who wish to 
design their own processor. 

It executes all the instructions in one clock cycle, 
including jumps, returns from subroutines and external 
accesses. A sequential access to ports has also been 
included for compilers who make an intensive use of 

multi-byte data. The assembler of this processor is full of 
macros that extend the native instruction set to facilitate 
low level programming.  
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